分别写幂函数,指数函数相关性质,以及运算法则

1个回答
展开全部
摘要 指数函数的性质指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
咨询记录 · 回答于2023-02-04
分别写幂函数,指数函数相关性质,以及运算法则
好的
幂函数的性质
图象:过点(1,1),一、三象限的角平分线(包含原点(0,0)).定义域:(-∞,+∞).值域:.(-∞,+∞)单调性:增函数.奇偶性:奇函数.
这是a等于1的情况
.α=0.y=x^0.图象:过点(1,1),平行于x轴的直线一条(剔去点(0,1)).定义域:(-∞,0)∪(0,+∞).值域:{1}.奇偶性:偶函数
②α=2y=x^2图象:过点(1,1),抛物线.定义域:(-∞,+∞).值域:.[0,+∞)单调性:减区间(-∞,0],增区间[0,+∞)奇偶性:偶函数.注:当α=2n,n∈N+时,幂函数y=x^α也具有上述性质.
.α是负整数.①α=-1y=x^(-1).图象:过点(1,1),双曲线.定义域:(-∞,0)∪(0,+∞).值域:.(-∞,0)∪(0,+∞)单调性:减区间(-∞,0)和(0,+∞).奇偶性:奇函数.
.②α=-2y=x^(-2).图象:过点(1,1),分布在一、二象限的拟双曲线.定义域:(-∞,0)∪(0,+∞).值域:(0,+∞)单调性:增区间(-∞,0),减区间(0,+∞)奇偶性:偶函数.注:当α=-2n,n∈N+时,幂函数y=x^α也具有上述性质.
幂运算常用的8个公式如下:1、同底数幂相乘:a^m·a^n=a^(m+n)。2、幂的乘方:(a^m)n=a^mn。3、积的乘方:(ab)^m=a^m·b^m。4、同底数幂相除:a^m÷a^n=a^(m-n)(a≠0)。5、a^(m+n)=a^m·a^n。6、a^mn=(a^m)·n。7、a^m·b^m=(ab)^m。8、a^(m-n)=a^m÷a^n(a≠0)。
同底数幂的乘法:底数不变,指数相加。同底数幂的除法:底数不变,指数相减。幂的乘方:底数不变,指数相乘。积的乘方:等于各因数分别乘方的积。商的乘方(分式乘方):分子分母分别乘方,指数不变。
指数函数的性质指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0
运算法则:同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n);2、同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n);3、幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn);4、积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消