∫3x×dx/9+x²
1个回答
关注
展开全部
Let u = 9 + x², then du/dx = 2x and dx = du/2x. Substituting, the integral becomes: ∫(3x/(9+x²))dx = (3/2)∫(1/u)du = (3/2)ln|u| + C = (3/2)ln|9+x²| + C Therefore, ∫(3x/(9+x²))dx = (3/2)ln|9+x²| + C.
咨询记录 · 回答于2023-04-23
∫3x×dx/9+x²
亲,为您找到一下两种解法
让 u = 9 + x²,那么 du/dx = 2x,dx = du/2x。将其代入积分式中得:∫(3x/(9+x²))dx = (3/2)∫(1/u)du = (3/2)ln|u| + C = (3/2)ln|9+x²| + C 因此,∫(3x/(9+x²))dx = (3/2)ln|9+x²| + C。
Let u = 9 + x², then du/dx = 2x and dx = du/2x. Substituting, the integral becomes: ∫(3x/(9+x²))dx = (3/2)∫(1/u)du = (3/2)ln|u| + C = (3/2)ln|9+x²| + C Therefore, ∫(3x/(9+x²))dx = (3/2)ln|9+x²| + C.