一道高等数学题,求解
假设地球赤道是一个圆周,对于该圆周上的点的连续函数,例如温度,证明在这个赤道内必有一条直径,它的两个端点温度相同...
假设地球赤道是一个圆周,对于该圆周上的点的连续函数,例如温度,证明在这个赤道内必有一条直径,它的两个端点温度相同
展开
3个回答
展开全部
设f(x,y)是定义在圆周L:x^2+y^2=R^2上的一个二元连续函数,L的上半圆周上的任意一点(x,y)=(x,sqrt(R^2-x^2))关于原点的对称点为(-x,-y)=(-x,-sqrt(R^2-x^2)).做辅助函数
F(x)=f(x,sqrt(R^2-x^2))-f(-x,-sqrt(R^2-x^2)),
则函数F(x)在[-R,R]上是连续函数,且
F(-R)=f(-R,0)-f(R,0),
F(R)=f(R,0)-f(-R,0)=-F(-R).
1)若F(R)=0,是f(-R,0)=f(R,0), 即命题成立.
2)若F(R)不为0,则不防设F(R)>0, 则F(-R)=-F(R)<0,由根的存在性定理(零点定理)知,在(-R,R)内必存在点x0,使得
F(x0)=0,
即有f(x0,sqrt(R^2-x0^2))=f(-x0,-sqrt(R^2-x0^2)),即f(x,y)在过两点(x0,\sqrt(R^2-x0^2))和(-x0,-sqrt(R^2-x0^2))的直径两端的函数值相等.
其中sqrt(x)表示根号下x。
F(x)=f(x,sqrt(R^2-x^2))-f(-x,-sqrt(R^2-x^2)),
则函数F(x)在[-R,R]上是连续函数,且
F(-R)=f(-R,0)-f(R,0),
F(R)=f(R,0)-f(-R,0)=-F(-R).
1)若F(R)=0,是f(-R,0)=f(R,0), 即命题成立.
2)若F(R)不为0,则不防设F(R)>0, 则F(-R)=-F(R)<0,由根的存在性定理(零点定理)知,在(-R,R)内必存在点x0,使得
F(x0)=0,
即有f(x0,sqrt(R^2-x0^2))=f(-x0,-sqrt(R^2-x0^2)),即f(x,y)在过两点(x0,\sqrt(R^2-x0^2))和(-x0,-sqrt(R^2-x0^2))的直径两端的函数值相等.
其中sqrt(x)表示根号下x。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询