y=[f(sin2x)]^2的微分
1个回答
关注
展开全部
因为y=[f(sin2x)]^2所以y’=2f(sin2x)×f’(sin2x)×(sin2x)’=2f(sin2x)f’(sin2x)×cos2x×2=4cos2xf(sin2x)f’(sin2x)所以y=[f(sin2x)]^2的微分是dy=(4cos2xf(sin2x)f’(sin2x))dx
咨询记录 · 回答于2022-11-06
y=[f(sin2x)]^2的微分
dy=(4cos2xf(sin2x)f’(sin2x))dxy=[f(sin2x)]^2的微分dy=(4cos2xf(sin2x)f’(sin2x))dx
因为y=[f(sin2x)]^2所以y’=2f(sin2x)×f’(sin2x)×(sin2x)’=2f(sin2x)f’(sin2x)×cos2x×2=4cos2xf(sin2x)f’(sin2x)所以y=[f(sin2x)]^2的微分是dy=(4cos2xf(sin2x)f’(sin2x))dx
因为y=[f(sin2x)]^2所以y’=2f(sin2x)×f’(sin2x)×(sin2x)’=2f(sin2x)f’(sin2x)×cos2x×2=4cos2xf(sin2x)f’(sin2x)所以y=[f(sin2x)]^2的微分是dy=(4cos2xf(sin2x)f’(sin2x))dx