幂级数的收敛半径计算公式
1个回答
展开全部
1、根据达朗贝尔审敛法,收敛半径R满足:如果幂级数满足,则:ρ是正实数时,1/ρ;ρ = 0时,+∞;ρ =+∞时,R= 0。
2、根据根值审敛法,则有柯西-阿达马公式,或者复分析中的收敛半径,将一个收敛半径是正数的幂级数的变量取为复数,就可以定义一个全纯函数。收敛半径可以被如下定理刻画:个中心为a的幂级数F的收敛半径R等于a与离a最近的使得函数不能用幂级数方式定义的点的距离,到 a的距离严格小于 R的所有点组成的集合称为收敛圆盘,最近点的取法是在整个复平面中,而不仅仅是在实轴上,即使中心和系数都是实数时也是如此。
幂级数中心点的定义:
为了能够扩展阿贝尔定理的应用,将幂级数中心点定义为:使指数为n的底为0的点称为幂级数中心点(网上找不到这个定义,所以就这样规定了),这个中心点刚好就是幂级数收敛区间的中心点(这个可以结合阿贝尔定理证明,阿贝尔定理中的中心点是0)。