离散数学p(a)的绝对值是什么意思

1个回答
展开全部
摘要 亲你好,很高兴为你解答,离散数学p(a)的绝对值是什么意思。答案是,在离散数学中,$p(a)$表示任意一个概率分布函数中事件 $a$ 发生的概率。概率分布函数是一种数学函数,用于描述一个随机变量取某些可能值的概率。$p(a)$ 的绝对值则表示 $p(a)$ 取绝对值后的结果,也就是将 $p(a)$ 的符号去掉,保留其数值大小。一般来说,概率分布函数的取值范围都是 0 到 1 之间的实数,因此 $p(a)$ 的绝对值也不会超过 1。 在一些特殊的应用场景中,可能需要计算 $p(a)$ 的绝对值或者使用带有 $p(a)$绝对值 的算式,以便更好地描述或计算相关概率问题的意思。
咨询记录 · 回答于2023-03-23
离散数学p(a)的绝对值是什么意思
亲你好,很高兴为你解答,离散数学p(a)的绝对值是什么意思。答案是,在离散数学中,$p(a)$表示任意一个概率分布函数中事件 $a$ 发生的概率。概率分布函数是一种数学函数,用于描述一个随机变量取某些可能值的概率。$p(a)$ 的绝对值则表示 $p(a)$ 取绝对值后的结果,也就是将 $p(a)$ 的符号去掉,保留其数值大小。一般来说,概率分布函数的取值范围都是 0 到 1 之间的实数,因此 $p(a)$ 的绝对值也不会超过 1。 在一些特殊的应用场景中,可能需要计算 $p(a)$ 的绝对值或者使用带有 $p(a)$绝对值 的算式,以便更好地描述或计算相关概率问题的意思。
可以帮我看下11-15吗
To prove that 3|ab, we need to show that either a or b is divisible by 3.Assume that neither a nor b is divisible by 3. Then, we can write a as 3k+1 or 3k+2, and b as 3m+1 or 3m+2, where k and m are integers.Now, let's consider the equation a² + b² = c². We can rewrite it as:(3k+1)² + (3m+1)² = c²9k² + 6k + 1 + 9m² + 6m + 1 = c²3(3k² + 2k + 3m² + 2m) + 2 = c²Since 3k² + 2k + 3m² + 2m is an integer, we can write c² as 3n+2 for some integer n.But this is impossible, since the square of
亲,这个是13题
To prove that (AxB)N(CxD)=(A nC)x(BnD), we need to show that any element in the left-hand side set belongs to the right-hand side set, and vice versa.Let (a,b) be an arbitrary element in (AxB)N(CxD), which means that (a,b) is both in AxB and in CxD. This implies that a is in A and c is in C, and b is in B and d is in D. Therefore, (a,b) is in (A nC)x(BnD), since a is in A nC and b is in BnD.Conversely, let (a,b) be an arbitrary element in (A nC)x(BnD), which means that a is in A nC and b is
第14题To prove that √Z + √5 is an irrational number, we need to use the proof by contradiction method. We assume that √Z + √5 is a rational number and can be expressed in the form of p/q, where p and q are coprime integers and q ≠ 0.Then we have:√Z + √5 = p/q√Z = p/q - √5Squaring both sides gives:Z = (p/q)^2 - 2√5(p/q) + 5Rearranging terms, we get:√5(p/q) = (p/q)^2 - Z + 5
Since the left-hand side is irration al and the right-hand side is ratio nal, this is a contradiction. Theref ore, our assumption that /Z+/5 is a rational number must be fal se, and hence Z+√/5 is an irrati onal number.
13题是不是不完整
13题是不是不完整,是的
To prove that (AxB) N (CxD) = (AnC) x (BnD), we need to show that any element in the left-hand side set is also in the right-hand side set, and vice versa.First, let (a, b) be an arbitrary element in (AxB) N (CxD). This means that (a, b) is in both AxB and CxD. Therefore, a is in A and c is in C, and b is in B and d is in D. Thus, (a, b) is in AnC and BnD, which implies that (a, b) is also in (AnC) x (BnD).
Next, let (a, b) be an arbitrary ele ment in (AnC) x (BnD). This mean s that a is in A and c is in C, and b is in B and d is in D. Thus, (a, b) is in both Ax B and C x D. Therefore,(a, b) is in (AxB) N(CxD).Since we have shown that any ele ment in the left-hand side set is a Iso in the right-hand side set, and vice versa, we can conclude that(AxB)N(CxD)=(AnC)x(BnD).
这个完整了
好的其他几题有吗
11~15,中的12 15弄不了,非常抱歉
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消