在正方体ABCD-A1B1C1D1中已知E,F.G分别是棱AB,AD,D1A1的中点 求证BG平行面A1EF
展开全部
取O为A1B1中点,连接GO,OB,GB,有:
∵F,E为AB,AD中点,G,O为A1B1,A1D1A中点
∴FE∥GO,BO∥A1E
∵GO,BO∈平面GOB,则FE∥面GOB,A1E∥面GOB
∵FE∩A1E=E,EF∈平面A1EF,A1E∈平面A1EF
∴平面A1EF∥平面GOB
∵BG∈平面GOB
∴BG∥A1EF
【要证明线面平行,可证明面面平行,在证明线在平面内,则可证明线面平行,面面平行证明:直线a,b均在平面α内,且a∩b=A a∥β b∥β 则α∥β】
(2)设正方体边长为1,PC为X,取N为FE中点,连接FP,EP,NP,A1N。
∵E,F为AB,AD中点,在正方体内,△PEF为等腰三角形,△A1EF为等腰三角形。
∴NP⊥EF,A1N⊥EF。
∴∠A1NP为平面A1EF与平面EFP的二面角
∴当平面A1EF垂直于平面EFP时,∠A1NP为90°
∴有连接NC,A1P,A1C1,由勾股定理得:
A1P²=3+X²-2X,A1N²=5/4(四分之五),NP²=9/8+X²
∴AN²+CP²=A1P²,3+X平方-2x=5/4+9/8+X²
所以X=5/16,既PC=5/16,PC1=11/16
∴当CP/PC1=5/11时,平面A1EF垂直于平面EFP
【计算部分请自己再算一遍,因为我的计算老是出错】
∵F,E为AB,AD中点,G,O为A1B1,A1D1A中点
∴FE∥GO,BO∥A1E
∵GO,BO∈平面GOB,则FE∥面GOB,A1E∥面GOB
∵FE∩A1E=E,EF∈平面A1EF,A1E∈平面A1EF
∴平面A1EF∥平面GOB
∵BG∈平面GOB
∴BG∥A1EF
【要证明线面平行,可证明面面平行,在证明线在平面内,则可证明线面平行,面面平行证明:直线a,b均在平面α内,且a∩b=A a∥β b∥β 则α∥β】
(2)设正方体边长为1,PC为X,取N为FE中点,连接FP,EP,NP,A1N。
∵E,F为AB,AD中点,在正方体内,△PEF为等腰三角形,△A1EF为等腰三角形。
∴NP⊥EF,A1N⊥EF。
∴∠A1NP为平面A1EF与平面EFP的二面角
∴当平面A1EF垂直于平面EFP时,∠A1NP为90°
∴有连接NC,A1P,A1C1,由勾股定理得:
A1P²=3+X²-2X,A1N²=5/4(四分之五),NP²=9/8+X²
∴AN²+CP²=A1P²,3+X平方-2x=5/4+9/8+X²
所以X=5/16,既PC=5/16,PC1=11/16
∴当CP/PC1=5/11时,平面A1EF垂直于平面EFP
【计算部分请自己再算一遍,因为我的计算老是出错】
展开全部
证明:连接EF、CD1、BA1,在正方体ABCD-A1B1C1D1中,
点E,F分别是棱AB,AA1的中点,∴EF∥BA1, EF=12BA1,
又A1D1∥B1C1,A1D1=B1C1∴四边形A1BCD1为平行四边形,∴BA1∥CD1BA1=CD1
∴EF∥CD1, EF=12CD1∴四边形是梯形,
∴D1F与CE的延长线交于一个点,设为O点,
则有O∈D1F,D1F⊂平面AD1,
∴O∈平面AD1,同理O∈平面AC,且平面AD1∩平面AC=AD
∴O∈AD,∴三条直线DA,CE,D1F交于一点.
点E,F分别是棱AB,AA1的中点,∴EF∥BA1, EF=12BA1,
又A1D1∥B1C1,A1D1=B1C1∴四边形A1BCD1为平行四边形,∴BA1∥CD1BA1=CD1
∴EF∥CD1, EF=12CD1∴四边形是梯形,
∴D1F与CE的延长线交于一个点,设为O点,
则有O∈D1F,D1F⊂平面AD1,
∴O∈平面AD1,同理O∈平面AC,且平面AD1∩平面AC=AD
∴O∈AD,∴三条直线DA,CE,D1F交于一点.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询