已知数列{an}中,a1=1,a2=2,an+1=2an+3an-1(n≥2且n∈N*).(I)证明数列{an+an+1}是等比数列;(II
已知数列{an}中,a1=1,a2=2,an+1=2an+3an-1(n≥2且n∈N*).(I)证明数列{an+an+1}是等比数列;(II)求a1+a2+…an(n∈N...
已知数列{an}中,a1=1,a2=2,an+1=2an+3an-1(n≥2且n∈N*).(I)证明数列{an+an+1}是等比数列;(II)求a1+a2+…an(n∈N*)
展开
展开全部
(I)证明:因为an+1=2an+3an-1,所以an+1+an=3(an+an-1),
所以
=3是常数,
所以数列{an+an+1}是以a1+a2=3为首项,等比为3的等比数列;
(II)由(Ⅰ)得an+1+an=3n,…①,
又an+1=2an+3an-1(n≥2且n∈N*).
得an+1-3an=-(an-3an-1),(n≥2且n∈N*).
即
=-1,常数,
所以数列{an+1-3an}是以-1为首项,公比为-1的等比数列,
an+1-3an=(-1)n,…②,
解①②得,an=
?3n?
?(?1)n,
∴a1+a2+…an=
(31+32+33+…+3n)-
[(-1)+(-1)2+(-1)3+…+(-1)n]
=
[3n+1+(?1)n+1?2] (n∈N*).
所以
an+1+an |
an+an?1 |
所以数列{an+an+1}是以a1+a2=3为首项,等比为3的等比数列;
(II)由(Ⅰ)得an+1+an=3n,…①,
又an+1=2an+3an-1(n≥2且n∈N*).
得an+1-3an=-(an-3an-1),(n≥2且n∈N*).
即
an+1?3an |
an?3an?1 |
所以数列{an+1-3an}是以-1为首项,公比为-1的等比数列,
an+1-3an=(-1)n,…②,
解①②得,an=
1 |
4 |
1 |
4 |
∴a1+a2+…an=
1 |
4 |
1 |
4 |
=
1 |
8 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询