大学数学题三重积分
1个回答
关注
展开全部
设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为ri(i=1,2,3.....n),体积记为Δδi,记||T||=max{ri},在每个小区域内取点f(ξi,ηi,ζi),作和式Σf(ξi,ηi,ζi)Δδi,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。
咨询记录 · 回答于2022-06-22
大学数学题三重积分
您好
您的问题我马上帮您解答
请稍等
设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为ri(i=1,2,3.....n),体积记为Δδi,记||T||=max{ri},在每个小区域内取点f(ξi,ηi,ζi),作和式Σf(ξi,ηi,ζi)Δδi,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。
这个是三重积分的定义
希望我的回答对您有所帮助