E(X,Y)是离散二维随机变量,且E(X)存在,证明E(E(X|Y))=E(X)
1个回答
关注
展开全部
因为,(X,Y)是二维离散型随机变量
所以,xy也是离散型随机变量
先求出xy的概率分布列
再求xy的期望
比如
P(x=0)=1/2,P(x=1)=1/2
P(y=0)=1/2,P(y=1)=1/2
则,P(xy=0)=3/4
P(xy=1)=1/4
所以,E(XY)=0×(3/4)+1×(1/4)=1/4
如果随机变量X的所有可能的取值是有限或者可列无穷多个,那么它分布函数的值域是离散的,对应的分布为离散分布。常用的离散分布有二项分布、泊松分布、几何分布、负二项分布等。
咨询记录 · 回答于2022-03-09
E(X,Y)是离散二维随机变量,且E(X)存在,证明E(E(X|Y))=E(X)
因为,(X,Y)是二维离散型随机变量所以,xy也是离散型随机变量先求出xy的概率分布列再求xy的期望比如P(x=0)=1/2,P(x=1)=1/2P(y=0)=1/2,P(y=1)=1/2则,P(xy=0)=3/4P(xy=1)=1/4所以,E(XY)=0×(3/4)+1×(1/4)=1/4如果随机变量X的所有可能的取值是有限或者可列无穷多个,那么它分布函数的值域是离散的,对应的分布为离散分布。常用的离散分布有二项分布、泊松分布、几何分布、负二项分布等。
可以帮我解一下第三题吗
请您耐心等待
我马上为您解答
谢谢
例如:A=6,fX(x)=3e^-(3x),x>0,时,0,其它时f Y( y)=2e^-(2y),y>0时,0;其它时f (x, y)=f X(x)*f Y( y),独立P{ 0
谢谢
不客气呢
希望我的回答对您有帮助
希望您学有所成
加油