6单选(2分)已知u=√R2-x2-y2-2,则全微分du=(A.dx+dy+dzVR2-x2-y2-22B.dx++dy+
1个回答
关注
展开全部
咨询记录 · 回答于2023-04-05
6单选(2分)已知u=√R2-x2-y2-2,则全微分du=(A.dx+dy+dzVR2-x2-y2-22B.dx++dy+
你好,已知u=√R2-x2-y2-2,则全微分du=(A.dx+dy+dzVR2-x2-y2-22B.dx++dy。由题意:u = √(R^2 - x^2 - y^2 - 2)对于u的全微分du,可以利用偏导数进行求解:du = (∂u/∂x)dx + (∂u/∂y)dy + (∂u/∂z)dz其中,各偏导数计算如下:∂u/∂x = -x/(√(R^2 - x^2 - y^2 - 2))∂u/∂y = -y/(√(R^2 - x^2 - y^2 - 2))∂u/∂z = -1/(√(R^2 - x^2 - y^2 - 2))带入原式,得到:du = (-x/(√(R^2 - x^2 - y^2 - 2)))dx + (-y/(√(R^2 - x^2 - y^2 - 2)))dy - (dz/(√(R^2 - x^2 - y^2 - 2)))两边同时乘以分母(√(R^2 - x^2 - y^2 - 2)),得到:du = (-x/(R^2 - x^2 - y^2 - 2))dx + (-y/(R^2 - x^2 - y^2 - 2))dy - (dz/(R^2 - x^2 - y^2 - 2))故答案为:du = (-x/(R^2 - x^2 - y^2 - 2))dx + (-y/(R^2 - x^2 - y^2 - 2))dy - (dz/(R^2 - x^2 - y^2 - 2))