两个向量垂直可得公式x1x2+y1y2=0是否可以用y=-x和y=x的关系来证明,为什么?
1个回答
关注
展开全部
亲亲,很高兴为您解答哦:可以使用y=-x和y=x的关系来证明公式x1x2+y1y2=0。假设有两个向量,分别为a(x1,y1)和b(x2,y2),则它们的点积为:a·b = x1x2 + y1y2如果a和b垂直,则它们的点积为0,即:a·b = 0将上式中的x1x2 + y1y2代入,得到:x1x2 + y1y2 = 0这就是我们要证明的公式哦
咨询记录 · 回答于2023-04-16
两个向量垂直可得公式x1x2+y1y2=0是否可以用y=-x和y=x的关系来证明,为什么?
亲亲,很高兴为您解答哦:可以使用y=-x和y=x的关系来证明公式x1x2+y1y2=0。假设有两个向量,分别为a(x1,y1)和b(x2,y2),则它们的点积为:a·b = x1x2 + y1y2如果a和b垂直,则它们的点积为0,即:a·b = 0将上式中的x1x2 + y1y2代入,得到:x1x2 + y1y2 = 0这就是我们要证明的公式哦
亲亲,扩展如下,现在我们来看一下y=-x和y=x的关系。这两条直线在平面直角坐标系中互相垂直,且斜率之积等于-1。因此,对于任意一对点(x1,y1)和(x2,y2)满足y1=-x1和y2=x2时,它们所构成的向量一定是垂直的。此时,根据上述公式可得:x1x2 + y1y2 = x1x2 + (-x1)(x2) = 0同样地,当y1=x1和y2=x2时,它们所构成的向量也一定是垂直的,此时同样可以通过上述公式得到结果为0。因此,y=-x和y=x的关系可以用来证明公式x1x2+y1y2=0。