什么是极大线性无关组
1个回答
展开全部
极大线性无关组(maximallinearlyindependentsystem)是线性空间的基对向量集的推广。设V是域P上的线性空间,S是V的子集。
若S的一部分向量线性无关,但在这部分向量中,加上S的任一向量后都线性相关,则称这部分向量是S的一个极大线性无关组。
V中子集的极大线性无关组不是惟一的,例如,V的基都是V的极大线性无关组。它们所含的向量个数(基数)相同。
V的子集S的极大线性无关组所含向量的个数(基数),称为S的秩。只含零向量的子集的秩是零。V的任一子集都与它的极大线性无关组等价。特别地,当S等于V且V是有限维线性空间时,S的秩就是V的维数。
极大线性无关组的基本性质:
1、只含零向量的向量组没有极大无关组。
2、一个线性无关向量组的极大无关组就是其本身。
3、极大线性无关组对于每个向量组来说并不唯一,但是每个向量组的极大线性无关组都含有相同个数的向量。
4、齐次方程组的解向量的极大无关组为基础解系。
5、任意一个极大线性无关组都与向量组本身等价。
6、一向量组的任意两个极大线性无关组都是等价的。
7、若一个向量组中的每个向量都能用另一个向量组中的向量线性表出,则前者极大线性无关向量组的向量个数小于或等于后者。