聚类分析和判别分析的区别与联系
1个回答
展开全部
1、聚类分析与判别分析的区别与联系 都是研究分类的,在进行聚类分析前,对总体到底有几种类型不知道(研究分几类较为合适需从计算中加以调整)。
2、判别分析则是在总体类型划分已知,对当前新样本判断它们属于哪个总体。如我们对研究的多元数据的特征不熟悉,当然要进行聚类分析,才能考虑判别分析问题。
3、聚类分析分两种:Q型聚类(对样本的聚类),P型聚类(对变量的聚类) 聚类分析需要注意的是,一般小样本数据可以用系统聚类法,大样本数据一般用快速聚类法(K均值聚类法)。需要根据统计量判断分几类比较合适,一般用R平方统计、伪F统计量等。
4、如用前者时,可以从R平方的变换看n个样品分成几类比较合适,如分为5类时,R平方为0.9,当分为四类时,其值减小较快,如R平方为0.4,则认为分五类比较合适,另外,不同的分类方法产生的分类结果可能不同,要结合实际情况选出最优的分类方法。
5、判别分析 有Fisher判别,Bayes判别和逐步判别。一般用Fisher判别即可,要考虑概率及误判损失最小的用Bayes判别,但变量较多时,一般先进行逐步判别筛选出有统计意义的变量,再结合实际情况选择用哪种判别方法。