用柯西中值定理证明等式和不等式的思路

1个回答
展开全部
摘要 问题研究的是两个不同函数在两点函数值差的比值,或者可以转换为这种形式的问题,则可以考虑使用柯西中值定理来探索问题的解法.【注】:同样,由于柯西中值定理由罗尔定理证明,所以一般能够用柯西中值定理证明的中值等式,都可以考虑罗尔定理来证明.但是如果是用柯西中值定理的结论来推导、验证的某些结论,则无法使用罗尔定理来替换,比如洛必达法则结论的推导.
咨询记录 · 回答于2022-12-12
用柯西中值定理证明等式和不等式的思路
如果中值等式中不含ξ的部分可以表示成两个不同函数在两点的函数值的差的比值,即(f(b)-f(a))/(g(b)-g(a))右边也正好可以写成这样两个函数在同一个中值点的导数的比值,则对于这类问题可以考虑使用柯西中值定理来推导验证.
问题研究的是两个不同函数在两点函数值差的比值,或者可以转换为这种形式的问题,则可以考虑使用柯西中值定理来探索问题的解法.【注】:同样,由于柯西中值定理由罗尔定理证明,所以一般能够用柯西中值定理证明的中值等式,都可以考虑罗尔定理来证明.但是如果是用柯西中值定理的结论来推导、验证的某些结论,则无法使用罗尔定理来替换,比如洛必达法则结论的推导.
柯西中值定理证明函数单调有界的思路步骤
证明函数有界的步骤:证明有界的思路是:存在一个正数M,使对所有x,满足|fx|
柯西中值定理证明函数的连续性的思路
首先,函数在该点要有定义;然后,函数在该点要存在极限(即左极限要等于右极限);最后,函数在该点的极限值还必须等于函数在该点的函数值。就是要这三点同时满足,就可以说函数在该点连续。首先,函数在该点要有定义;然后,函数在该点要存在极限(即左极限要等于右极限);最后,函数在该点的极限值还必须等于函数在该点的函数值。就是要这三点同时满足,就可以说函数在该点连续。
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消