
证明(x+y)4+小于等于8(x4+y4)
1个回答
关注

展开全部
由二项式定理可得:(x+y)^4 = x^4+4x^3y+6x^2y^2+4xy^3+y^4(x+y)4 =x4 +4x3 y+6x2 y2 +4xy3 +y4 因为x^4x4 和y^4y4 是正数,所以可以将右边的式子拆成两个部分:(x+y)^4 = (x^4+y^4)+4x^3y+4xy^3+6x^2y^2(x+y)4 =(x4 +y4 )+4x3 y+4xy3 +6x2 y2 要证明(x+y)^4 \leq 8(x^4+y^4)(x+y)4 ≤8(x4 +y4 ),只需要证明:4x^3y+4xy^3+6x^2y^2 \leq 7(x^4+y^4)4x3 y+4xy3 +6x2 y2 ≤7(x4 +y4 )由均值不等式可得:\frac{4x^3y+4xy^3}{2} \leq 2\left(\frac{(x^4+y^4)}{2}\right)^{\frac{3}{4}}24x3 y+4xy3 ≤2(2(x4 +y4 ) )43 \frac{6x^2y^2}{2} \leq 2\left(\frac{(x^4+y^4)}{2}\right)^{\frac{1}{2}}26x2 y2 ≤2(2(x4 +y4 ) )21 将上述两个不等式相加,得:4x^3y+4xy^3+6x^2y^2 \leq 2(x^4+y^4)^{\frac{3}{4}} + 4(x^4+y^4)^{\frac{1}{2}}4x3 y+4xy3 +6x2 y2 ≤2(x4 +y4 )43 +4(x4 +y4 )21 由均值不等式可得:2(x^4+y^4)
咨询记录 · 回答于2023-03-04
证明(x+y)4+小于等于8(x4+y4)
由二项式定理可得:(x+y)^4 = x^4+4x^3y+6x^2y^2+4xy^3+y^4(x+y)4 =x4 +4x3 y+6x2 y2 +4xy3 +y4 因为x^4x4 和y^4y4 是正数,所以可以将右边的式子拆成两个部分:(x+y)^4 = (x^4+y^4)+4x^3y+4xy^3+6x^2y^2(x+y)4 =(x4 +y4 )+4x3 y+4xy3 +6x2 y2 要证明(x+y)^4 \leq 8(x^4+y^4)(x+y)4 ≤8(x4 +y4 ),只需要证明:4x^3y+4xy^3+6x^2y^2 \leq 7(x^4+y^4)4x3 y+4xy3 +6x2 y2 ≤7(x4 +y4 )由均值不等式可得:\frac{4x^3y+4xy^3}{2} \leq 2\left(\frac{(x^4+y^4)}{2}\right)^{\frac{3}{4}}24x3 y+4xy3 ≤2(2(x4 +y4 ) )43 \frac{6x^2y^2}{2} \leq 2\left(\frac{(x^4+y^4)}{2}\right)^{\frac{1}{2}}26x2 y2 ≤2(2(x4 +y4 ) )21 将上述两个不等式相加,得:4x^3y+4xy^3+6x^2y^2 \leq 2(x^4+y^4)^{\frac{3}{4}} + 4(x^4+y^4)^{\frac{1}{2}}4x3 y+4xy3 +6x2 y2 ≤2(x4 +y4 )43 +4(x4 +y4 )21 由均值不等式可得:2(x^4+y^4)
文字不好发,我给你发图片吧
请文字发给我