
微分方程(x^2+y^2)(xdx+ydy)=0怎么解
1个回答
关注

展开全部
您好解微分方程(x^2+y^2)(xdx+ydy)=0x^3dx+ x^2ydy+ xy^2dx+ y^3dy=0等式两边积分得∫x^3dx+∫x^2ydv+∫xy^2dx+∫y^3dy=C(C为常数)(1/4)*x^4+(1/2)*x^2*y^2+(1/2)*x^2*y^2+(1/4)*y^4=C(x^4+y^4)/4+x^2+y^2-C=0
咨询记录 · 回答于2023-03-17
微分方程(x^2+y^2)(xdx+ydy)=0怎么解
能否提供图片解答
您好解微分方程(x^2+y^2)(xdx+ydy)=0x^3dx+ x^2ydy+ xy^2dx+ y^3dy=0等式两边积分得∫x^3dx+∫x^2ydv+∫xy^2dx+∫y^3dy=C(C为常数)(1/4)*x^4+(1/2)*x^2*y^2+(1/2)*x^2*y^2+(1/4)*y^4=C(x^4+y^4)/4+x^2+y^2-C=0
或[(1/2)y^2+1]^2+[(1/2)x^2+1]^2-2+C=0