设z=uv+3u,+而u=e^(x-y),v=xsiny,求偏导z/偏导x
1个回答
关注
展开全部
根据链式法则,先对 $z$ 求对 $u$ 的偏导数,再对 $u$ 求对 $x$ 的偏导数,最后将结果乘以对 $v$ 求对 $x$ 的偏导数:
\begin{aligned}
\frac{\partial z}{\partial x} &= \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial x} \\
&= (v+3) \cdot (\frac{\partial}{\partial x}e^{x-y}) \cdot (y\cos(x\sin y)+x^2\cos(x\sin y)\cos y) \\
&= (xsiny+3) \cdot e^{x-y} \cdot (y\cos(x\sin y)+x^2\cos(x\sin y)\cos y)
\end{aligned}
因此,$\frac{\partial z}{\partial x}=(xsiny+3) \cdot e^{x-y} \cdot (y\cos(x\sin y)+x^2\cos(x\sin y)\cos y)$。
咨询记录 · 回答于2024-01-02
设z=uv+3u,+而u=e^(x-y),v=xsiny,求偏导z/偏导x
根据链式法则,先对 $z$ 求对 $u$ 的偏导数,再对 $u$ 求对 $x$ 的偏导数,最后将结果乘以对 $v$ 求对 $x$ 的偏导数:
$$\begin{aligned}
\frac{\partial z}{\partial x} &= \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial x} \\
&= (v+3) \cdot (\frac{\partial}{\partial x}e^{x-y}) \cdot (y\cos(x\sin y)+x^2\cos(x\sin y)\cos y) \\
&= (xsiny+3) \cdot e^{x-y} \cdot (y\cos(x\sin y)+x^2\cos(x\sin y)\cos y)
\end{aligned}$$
因此,$\frac{\partial z}{\partial x}=(xsiny+3) \cdot e^{x-y} \cdot (y\cos(x\sin y)+x^2\cos(x\sin y)\cos y)$。
选D吗
是的亲亲