设+f(x)=√xcosx+3lnx+sinπ/(7)+求f"(x)
1个回答
关注
展开全部
咨询记录 · 回答于2023-06-11
设+f(x)=√xcosx+3lnx+sinπ/(7)+求f"(x)
您好,亲。这边根据您提供的问题,为您查询到以下:首先,我们需要求出 f'(x):f(x) = √(x cos x) + 3 ln x + sin(π/7)f'(x) = (1/2) (x cos x)^(-1/2) (-sin x + cos x) + 3/xf'(x) = (-sin x + cos x) / (2√(x cos x)) + 3/x接下来,我们需要求出 f''(x):f''(x) = [(-cos x - sin x) / (2√(x cos x)) - (sin x - cos x)^2 / (4x(x cos x)^(3/2))] + (-3/x^2)f''(x) = [-cos x - sin x - (sin^2 x - 2 sin x cos x + cos^2 x) / (4x cos x)^(3/2)] - 3/x^2f''(x) = [-cos x - sin x - 1 / (2x cos x)] - 3/x^2因此,f''(x) = -cos x - sin x - 1 / (2x cos x) - 3/x^2。