一元二次方程根与系数的关系

1个回答
爱知识的小林老师
2023-05-29
知道答主
回答量:7
采纳率:100%
帮助的人:6463
展开全部
一元二次方程中根与系数的关系:
ax²+bx+c=(a≠0),当判别式=b²-4ac>=0时。
设两根为x₁,x₂,则根与系数的关系(韦达定理):
1、x₁+x₂=-b/a;
2、x₁x₂=c/a。
一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式决定。
一元二次方程解法:
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
1、接开平方法
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)²=n (n≥0)的方程,其解为x=±根号下n+m。
2、公式法
把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=/(2a) , (b²-4ac≥0)就可得到方程的根。
韦达定理的意义:
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。
无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。
判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消