已知各项均为正数的等比数列{an},其前n项和为Sn,满足2Sn=an+2-6,求数列{an}的通项公式
1个回答
关注
展开全部
根据等比数列的前n项和公式,有:Sn = a1(1-q^n)/(1-q)其中,a1为首项,q为公比。将2Sn=an^2-6代入上式,得:2Sn = a1(1-q^n)/(1-q) = (a1^2-6)/(2)移项化简,得:a1(1-q^n) = (a1^2-6)/(1-q)因为a1和q均为正数,所以1-q^n>0,即q^n0,所以q^n→0(n→∞)。因此,当n→∞时,左边的式子趋近于a1,右边的式子趋近于(a1^2-6)/q。因此,有:a1 = (a1^2-6)/q解得:q = (a1^2-6)/a1将q代入Sn的公式,得:Sn = a1(1-(a1^2-6)^n/a1^n)/(1-(a1^2-6)/a1)化简,得:Sn = (a1^2-6)(1-(a1^2-6)^n/a1^n)/(a1^2-8a1+6)因为n→∞时,(a1^2-6)^n/a1^n→0,所以:lim(n→∞)Sn = (a1^2-6)/(a1^2-8a1+6)又因为2Sn=an^2-6,所以:2(a1^2-6)/(a1^2-8a1+6) = an^2-6化简,得:an^2 = 2(a1^2-6) + 6(a1^2-8a1+6)/(a1^2-8a1+6)化简,得:an^2 = 2(a1^2-6) + 6/(a1-6)因为a1和an均为正数,所以:an = sqrt(2(a1^2-6) + 6/(a1-6))因此,数列{an}的通项公式为:an = sqrt(2(a1^2-6) + 6/(a1-6))
咨询记录 · 回答于2023-04-17
已知各项均为正数的等比数列{an},其前n项和为Sn,满足2Sn=an+2-6,求数列{an}的通项公式
亲您好很荣幸为您解答哦!已知各项均为正数的等比数列{an},其前n项和为Sn,满足2Sn=an+2-6,求数列{an}的通项公式为:an = sqrt(2(a1^2-6) + 6/(a1-6))。
根据等比数列的前n项和公式,有:Sn = a1(1-q^n)/(1-q)其中,a1为首项,q为公比。将2Sn=an^2-6代入上式,得:2Sn = a1(1-q^n)/(1-q) = (a1^2-6)/(2)移项化简,得:a1(1-q^n) = (a1^2-6)/(1-q)因为a1和q均为正数,所以1-q^n>0,即q^n0,所以q^n→0(n→∞)。因此,当n→∞时,左边的式子趋近于a1,右边的式子趋近于(a1^2-6)/q。因此,有:a1 = (a1^2-6)/q解得:q = (a1^2-6)/a1将q代入Sn的公式,得:Sn = a1(1-(a1^2-6)^n/a1^n)/(1-(a1^2-6)/a1)化简,得:Sn = (a1^2-6)(1-(a1^2-6)^n/a1^n)/(a1^2-8a1+6)因为n→∞时,(a1^2-6)^n/a1^n→0,所以:lim(n→∞)Sn = (a1^2-6)/(a1^2-8a1+6)又因为2Sn=an^2-6,所以:2(a1^2-6)/(a1^2-8a1+6) = an^2-6化简,得:an^2 = 2(a1^2-6) + 6(a1^2-8a1+6)/(a1^2-8a1+6)化简,得:an^2 = 2(a1^2-6) + 6/(a1-6)因为a1和an均为正数,所以:an = sqrt(2(a1^2-6) + 6/(a1-6))因此,数列{an}的通项公式为:an = sqrt(2(a1^2-6) + 6/(a1-6))