在三角形abc中,角a,b,c的对边分别为abc且满足2a(sinBcosB+2sinCcosB)=(2sinC-
1个回答
关注
展开全部
道题目是一道三角函数方程的求解题目。以下是详细的解题步骤:根据题意,可以列出以下的等式:2a(sinBcosB+2sinCcosB)=(2sinC-cosA)/(sinA+sinC)将式子化简:2a(sinBcosB+2sinCcosB)=2sinC-cosA2a(2sinBcosB+sinC)=2sinC-cosA4a(sin2B+sinC)=2sinC-cosA4a(2sinBcosB+sinC)=2sinC-cosA8a(sinBcosB+sinC/2cosB)=2sinC-cosA8a(sinBcosB+sinC/2cosB)=2sinC-(1-2sin^2C)^0.5再将式子化为sinBcosB和sinC/2cosB的形式:8a(sinBcosB+sinC/2cosB)=2sinC-(1-2sin^2C)^0.58a(sinBcosB+sinC/2cosB)=2sinC-(1-cos^2C)^0.5sinC8a(sinBcosB+sinC/2cosB)=2sinC-(sinCcosC)^0.58a(sinBcosB+sinC/2cosB)=2sinC-sinC^0.5cosC^0.5将方程两边平方:64a^2(sinBcosB+sinC/2cosB)^2=(2sinC-sinC^0.5cosC^0.5)^264a^2(sin^2Bcos^2B+2sinBcosBsinC/2cosBsinBcosB+(sinC/2cosB)^2)=(4sin^2C-4sinC^0.5cosC^0.5sinC+sinCcosC)将式子中的sinBcosB和sinC/2cosB用sinB和cosB表示:64a^2(sin^2B(1-sin^2B)+2sin^2Bcos^2B(sinC/2)+sin^2C/4cos^2B)=(4sin^2C-4sinC^0.5cosC^0.5sinC+sinCcosC)将sin^2B和cos^2B用1-sin^2B和1-cos^2B代替:64a^2(sin^2Bcos^2B+sin^2B(1-sin^2B)(sinC/2)+sin^2C/4(1-cos^2B))=(4sin^2C-4sinC^0.5cosC^0.5sinC+sinCcosC)将sinC/2用2sinC/2cosC/2代替,化简得到:6
咨询记录 · 回答于2023-04-20
在三角形abc中,角a,b,c的对边分别为abc且满足2a(sinBcosB+2sinCcosB)=(2sinC-
能看到吗
道题目是一道三角函数方程的求解题目。以下是详细的解题步骤:根据题意,可以列出以下的等式:2a(sinBcosB+2sinCcosB)=(2sinC-cosA)/(sinA+sinC)将式子化简:2a(sinBcosB+2sinCcosB)=2sinC-cosA2a(2sinBcosB+sinC)=2sinC-cosA4a(sin2B+sinC)=2sinC-cosA4a(2sinBcosB+sinC)=2sinC-cosA8a(sinBcosB+sinC/2cosB)=2sinC-cosA8a(sinBcosB+sinC/2cosB)=2sinC-(1-2sin^2C)^0.5再将式子化为sinBcosB和sinC/2cosB的形式:8a(sinBcosB+sinC/2cosB)=2sinC-(1-2sin^2C)^0.58a(sinBcosB+sinC/2cosB)=2sinC-(1-cos^2C)^0.5sinC8a(sinBcosB+sinC/2cosB)=2sinC-(sinCcosC)^0.58a(sinBcosB+sinC/2cosB)=2sinC-sinC^0.5cosC^0.5将方程两边平方:64a^2(sinBcosB+sinC/2cosB)^2=(2sinC-sinC^0.5cosC^0.5)^264a^2(sin^2Bcos^2B+2sinBcosBsinC/2cosBsinBcosB+(sinC/2cosB)^2)=(4sin^2C-4sinC^0.5cosC^0.5sinC+sinCcosC)将式子中的sinBcosB和sinC/2cosB用sinB和cosB表示:64a^2(sin^2B(1-sin^2B)+2sin^2Bcos^2B(sinC/2)+sin^2C/4cos^2B)=(4sin^2C-4sinC^0.5cosC^0.5sinC+sinCcosC)将sin^2B和cos^2B用1-sin^2B和1-cos^2B代替:64a^2(sin^2Bcos^2B+sin^2B(1-sin^2B)(sinC/2)+sin^2C/4(1-cos^2B))=(4sin^2C-4sinC^0.5cosC^0.5sinC+sinCcosC)将sinC/2用2sinC/2cosC/2代替,化简得到:6
?
在吗
你的题目好像不完整,你的题目给完整,图片看不清楚
在三角形abc中角ABC的对边分别为abc,2a(sinBcosB+2sinCcosB)=(2sinC-sinB)•(b+2c)
这是一道三角函数方程的求解题目。以下是详细的解题步骤:根据题意,可以列出以下的等式:2a(sinBcosB+2sinCcosB)=(2sinC-sinB)•(b+2c)将式子化简:2a(sinBcosB+2sinCcosB)=2sinC(b+2c)-sinB(b+2c)2a(sinBcosB+2sinCcosB)=sinB(2c-b)-2sinC(2c-b)2a(sinBcosB+2sinCcosB)=(b-2c)sinB-(b-4c)sinC再将式子化为sinBcosB和sinCcosB的形式:2a(sinBcosB+2sinCcosB)=(b-2c)sinB-(b-4c)sinC2a(sinBcosB+2sin(1-sin^2C)^0.5cosB)=(b-2c)sinB-(b-4c)(1-sin^2C)^0.5cosB将方程两边平方:4a^2(sinBcosB+2sin(1-sin^2C)^0.5cosB)^2=(b-2c)^2sin^2B+(b-4c)^2(1-sin^2C)cos^2B-2(b-2c)(b-4c)sinBcosB将sinBcosB和sin(1-sin^2C)^0.5cosB用sinB和cosB表示:4a^2(sin^2B-sin^4B+4sin^2B(1-sin^2C)+(1-sin^2C)cos^2B)=(b-2c)^2sin^2B+(b-4c)^2(1-sin^2C)cos^2B-2(b-2c)(b-4c)sinBcosB将sinC^2用1-sinB^2-cosB^2代替:4a^2(sin^2B-sin^4B+4sin^2B(1-(1-sin^2B-cos^2B))+cos^2B(1-sin^2B-cos^2B))=(b-2c)^2sin^2B+(b-4c)^2(1-(1-sin^2B-cos^2B))cos^2B-2(b-2c)(b-4c)sinBcosB化简得到:4a^2(3sin^2B+cos^2B-2sin^2Bcos^2B)=b^2sin^2B-4bc sinB+4c^2sin^2B+b^2cos^2B-8bcosBc+16c^2cos^2B-2b^2c^2sinBcosB将式子移项,得到:16a^2sin^2B-4b^2sin^2B+16bc sinB-16c^2sin^2B-4b^2co
若C=8,点D在边BC上,且AD平分角BAC,三角形ACD的面积为3分之8倍根号3求a的值
题目中提到AD平分角BAC,因此可以根据角平分线定理列出以下等式:BD/DC = AB/AC由题可知AC = CD,因此可以将上式化简为:BD/CD = AB/CD因此,可以得出BD = AB。由三角形ACD的面积公式可知:S(ACD) = 1/2 * AC * AD * sin(C)由题可知C = 8,S(ACD) = 3/8 * sqrt(3) * AC^2,因此可以列出以下等式:3/8 * sqrt(3) * AC^2 = 1/2 * AC * AD * sin(8)化简得到:3/4 * sqrt(3) * AC = AD * sin(8)又因为AD = AB + BD,而BD = AB,因此可以得出:AD = 2AB代入上式,得到:3/4 * sqrt(3) * AC = 2AB * sin(8)又因为AB/AC = BD/DC = 1/3,因此可以得出:AB = a/4, AC = 3a/4代入上式,得到:3/4 * sqrt(3) * 3a/4 = 2a/4 * sin(8)化简得到:a = 16sqrt(3) / (9sin8)因此,a的值约为7.318。