概率论大题

1个回答
展开全部
摘要 n=300,设Xi是第i只零件的重量,E(Xi)=0.5,Var(Xi)=0.1,i=1,305kg记X的平均值(就是X上面加一横)=1/100乘以Xi的累加(就是那个累加的符号),//应该懂的对吧( X的平均值—u)/(根号方差/根号n)=(X的平均值—0.5)/70.71~N(0,1),于是 P{X的平均值>2510}=P{(X的平均值—0.5)/70.71>(2510—0.5)/70.71}=P{(X的平均值—0.5)/70.71>35.63}≈ 1— Φ(35.63)
咨询记录 · 回答于2023-01-08
概率论大题
你好,把题目打给我
一般冰箱的使用年限是10年,下面是某品牌冰箱20个用户的跟踪数据 这20个用户的冰箱使用寿命为 11.1 11.2 10.6 10.5 9.8 10.4 10.6 9.6 9.7 9.9 10.9 9.6 10.2 10.3 9.6 9.9 9.8 10.5 10.1 9.7 该品牌冰箱是否明显用于一般冰箱 取α=0.05(附上分位点Z0.05=1.65 Z0.025=1.96 t0.05(19)=2.0930 t0.025(19)=1.7291)
一般冰箱的使用年限是10年,下面是某品牌冰箱20个用户的跟踪数据 这20个用户的冰箱使用寿命为 11.1 11.2 10.6 10.5 9.8 10.4 10.6 9.6 9.7 9.9 10.9 9.6 10.2 10.3 9.6 9.9 9.8 10.5 10.1 9.7 该品牌冰箱是否明显用于一般冰箱 取α=0.05(附上分位点Z0.05=1.65 Z0.025=1.96 t0.05(19)=2.0930 t0.025(19)=1.7291)解答:因为P{Z<0.05}=1-0.025=0.975。即需要查1-0.025=0.975对应的Z值,翻开正态分布表,刚好能查到0.9750对应的Z值为1.96,故Z0.025=1.96。对应的是1.96。
然后捏
这样解就可以了
那他是不是优于一般冰箱捏
那个答
是,优于一般冰箱
还有一道题 设零件的重量都是随机变量 他们互独立且都服从)[0,2]均匀分配,则300只零件的总重量超过305kg的概率近似为多少
n=300,设Xi是第i只零件的重量,E(Xi)=0.5,Var(Xi)=0.1,i=1,305kg记X的平均值(就是X上面加一横)=1/100乘以Xi的累加(就是那个累加的符号),//应该懂的对吧( X的平均值—u)/(根号方差/根号n)=(X的平均值—0.5)/70.71~N(0,1),于是 P{X的平均值>2510}=P{(X的平均值—0.5)/70.71>(2510—0.5)/70.71}=P{(X的平均值—0.5)/70.71>35.63}≈ 1— Φ(35.63)
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消