∫1/2cos2xdx-∫1/2cos4xdx

1个回答
展开全部
摘要 亲亲,您好!
首先,我们可以使用三角恒等式来化简这个积分:
∫(1/2)cos(2x)dx - ∫(1/2)cos(4x)dx
= (1/2)∫cos(2x)dx - (1/2)∫cos(4x)dx
= (1/2)sin(2x)/2 - (1/8)sin(4x) + C
其中C是积分常数。
因此,原函数为:
(1/4)sin(2x) - (1/8)sin(4x) + C
咨询记录 · 回答于2024-01-13
∫1/2cos2xdx-∫1/2cos4xdx
亲亲,您好,我们可以使用三角恒等式化简这个积分: ∫(1/2)cos(2x)dx - ∫(1/2)cos(4x)dx = (1/2)∫cos(2x)dx - (1/2)∫cos(4x)dx = (1/2)sin(2x)/2 - (1/8)sin(4x) + C = (1/4)sin(2x) - (1/8)sin(4x) + C 其中C是积分常数。 因此,原函数为:(1/4)sin(2x) - (1/8)sin(4x) + C
不需要凑微分吗?
不需要凑微分
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消