8设 f(x)=x|x(x-1)(x-2)^2] ,判断f(x)在x=0,x=1,x=2是否可导
1个回答
关注
展开全部
亲亲您好!很高兴为您解答:要判断函数f(x)在特定点是否可导,需要检查该点是否满足导数的定义。导数的定义要求函数在该点附近存在一个唯一的切线。首先,我们将分别考虑x=0、x=1和x=2三个点。1. x = 0:计算f(0) = 0|0(0-1)(0-2)^2 = 0,此时f(x)在x=0的值为0。然而,要判断f(x)在x=0是否可导,我们需要计算f(x)在x=0处的左导数和右导数,即左极限和右极限。左极限:lim(x→0-) [f(x) - f(0)] / (x - 0) = lim(x→0-) [f(x) - 0] / x = lim(x→0-) [x|x(x-1)(x-2)^2|] / x = lim(x→0-) |(x-1)(x-2)^2| = |(-1)(-2)^2| = 4右极限:lim(x→0+) [f(x) - f(0)] / (x - 0) = lim(x→0+) [f(x) - 0] / x = lim(x→0+) [x|x(x-1)(x-2)^2|] / x = lim(x→0+) |(x-1)(x-2)^2| = |(1)(2)^2| = 4左极限和右极限都存在且相等,且极限值为4,因此f(x)在x=0处的导数存在。2. x = 1:计算f(1) = 1|1(1-1)(1-2)^2 = 0,此时f(x)在x=1的值为0。左极限:lim(x→1-) [f(x) - f(1)] / (x - 1) = lim(x→1-) [f(x) - 0] / (x - 1) = lim(x→1-) [x|x(x-1)(x-2)^2|] / (x - 1) = lim(x→1-) |(x)(x-2)^2| = |(1)(1-2)^2| = 1右极限:lim(x→1+) [f(x) - f(1)] / (x - 1) = lim(x→1+) [f(x) - 0] / (x - 1) = lim(x→1+) [x|x(x-1)(x-2)^2|] / (x - 1) = lim(x→1
咨询记录 · 回答于2023-05-27
8设 f(x)=x|x(x-1)(x-2)^2] ,判断f(x)在x=0,x=1,x=2是否可导
亲亲您好!很高兴为您解答:要判断函数f(x)在特定点是否可导,需要检查该点是否满足导数的定义。导数的定义要求函数在该点附近存在一个唯一的切线。首先,我们将分别考虑x=0、x=1和x=2三个点。1. x = 0:计算f(0) = 0|0(0-1)(0-2)^2 = 0,此时f(x)在x=0的值为0。然而,要判断f(x)在x=0是否可导,我们需要计算f(x)在x=0处的左导数和右导数,即左极限和右极限。左极限:lim(x→0-) [f(x) - f(0)] / (x - 0) = lim(x→0-) [f(x) - 0] / x = lim(x→0-) [x|x(x-1)(x-2)^2|] / x = lim(x→0-) |(x-1)(x-2)^2| = |(-1)(-2)^2| = 4右极限:lim(x→0+) [f(x) - f(0)] / (x - 0) = lim(x→0+) [f(x) - 0] / x = lim(x→0+) [x|x(x-1)(x-2)^2|] / x = lim(x→0+) |(x-1)(x-2)^2| = |(1)(2)^2| = 4左极限和右极限都存在且相等,且极限值为4,因此f(x)在x=0处的导数存在。2. x = 1:计算f(1) = 1|1(1-1)(1-2)^2 = 0,此时f(x)在x=1的值为0。左极限:lim(x→1-) [f(x) - f(1)] / (x - 1) = lim(x→1-) [f(x) - 0] / (x - 1) = lim(x→1-) [x|x(x-1)(x-2)^2|] / (x - 1) = lim(x→1-) |(x)(x-2)^2| = |(1)(1-2)^2| = 1右极限:lim(x→1+) [f(x) - f(1)] / (x - 1) = lim(x→1+) [f(x) - 0] / (x - 1) = lim(x→1+) [x|x(x-1)(x-2)^2|] / (x - 1) = lim(x→1
左极限和右极限都存在且相等,且极限值为1,因此f(x)在x=1处的导数存在。x = 2:计算f(2) = 2|2(2-1)(2-2)^2 = 0,此时f(x)在x=2的值为0。左极限:lim(x→2-) [f(x) - f(2)] / (x - 2)= lim(x→2-) [f(x) - 0] / (x - 2)= lim(x→2-) [x|x(x-1)(x-2)^2|] / (x - 2)= lim(x→2-) |(x)(x-1)(x-2)^2|= |(2)(2-1)(2-2)^2| = 0右极限:lim(x→2+) [f(x) - f(2)] / (x - 2)= lim(x→2+) [f(x) - 0] / (x - 2)= lim(x→2+) [x|x(x-1)(x-2)^2|] / (x - 2)= lim(x→2+) |(x)(x-1)(x-2)^2|= |(2)(2-1)(2-2)^2| = 0左极限和右极限都存在且相等,且极限值为0,因此f(x)在x=2处的导数存在。综上所述,函数f(x)在x=0、x=1和x=2处都是可导的。
还有上面两题可以讲一下嘛
6。要求函数f(x)在x = 2处的导数,可以使用求导公式进行计算。首先,我们可以将函数f(x)展开为两个部分:x² 和 sin(x-2)。然后,分别对这两个部分求导,并将结果相加,即可得到f'(x)。对于 x²,我们知道其导数为 2x。对于 sin(x-2),其导数为 cos(x-2)。将这两个导数相乘,即得到了 f'(x) = 2x cos(x-2)。现在,我们将 x = 2 代入上述导数公式,即可得到 f'(2) 的值:f'(2) = 2 * 2 * cos(2-2) = 4 * cos(0) = 4 * 1 = 4。因此,f'(2) 的值为 4。
7。不会
8。要判断函数f(x)在给定点可导与否,我们需要检查该点的左导数和右导数是否相等。首先,我们来分析函数f(x)在x=0的情况。我们需要计算x=0处的左导数和右导数。左导数:f'(0-) = lim┬(h→0-)[f(0+h)-f(0)]/h = lim┬(h→0-)[f(h)-f(0)]/h = lim┬(h→0-)[h|h(h-1)(h-2)|-0]/h = lim┬(h→0-)[h^2|h(h-1)(h-2)|]/h = lim┬(h→0-)[h|h(h-1)(h-2)|] = 0右导数:f'(0+) = lim┬(h→0+)[f(0+h)-f(0)]/h = lim┬(h→0+)[f(h)-f(0)]/h = lim┬(h→0+)[h|h(h-1)(h-2)|-0]/h = lim┬(h→0+)[h^2|h(h-1)(h-2)|]/h = lim┬(h→0+)[h|h(h-1)(h-2)|] = 0由于左导数和右导数相等,f(x)在x=0处可导。接下来,我们来分析函数f(x)在x=1的情况。左导数:f'(1-) = lim┬(h→0-)[f(1+h)-f(1)]/h = lim┬(h→0-)[f(1+h)-f(1)]/h = lim┬(h→0-)[h|h(h-1)(h-2)|-1]/h = lim┬(h→0-)[h^2|h(h-1)(h-2)|-h]/h = lim┬(h→0-)[h|h(h-1)(h-2)|-1] = -1右导数:f'(1+) = lim┬(h→0+)[f(1+h)-f(1)]/h = lim┬(h→0+)[f(1+h)-f(1)]/h = lim┬(h→0+)[h|h(h-1)(h-2)|-1]/h = lim┬(h→0+)[h^2|h(h-1)(h-2)|-h]/h = lim┬(h→0+)[h|h(h-1)(h-2)|-1] = -1
由于左导数和右导数相等,f(x)在x=1处可导。最后,我们来分析函数f(x)在x=2的情况。左导数:f'(2-) = lim┬(h→0-)[f(2+h)-f(2)]/h= lim┬(h→0-)[f(2+h)-f(2)]/h= lim┬(h→0-)[h|h(h-1)(h-2)|-4]/h= lim┬(h→0-)[h^2|h(h-1)(h-2)|-4h]/h= lim┬(h→0-)[h|h(h-1)(h-2)|-4]= -4右导数:f'(2+) = lim┬(h→0+)[f(2+h)-f(2)]/h= lim┬(h→0+)[f(2+h)-f(2)]/h= lim┬(h→0+)[h|h(h-1)(h-2)|-4]/h= lim┬(h→0+)[h^2|h(h-1)(h-2)|-4h]/h= lim┬(h→0+)[h|h(h-1)(h-2)|-4]= -4由于左导数和右导数相等,f(x)在x=2处可导。综上所述,函数f(x)在x=0, x=1, x=2处都可导。