1➕1🟰?
1个回答
关注
展开全部
亲亲您好,1➕1等于2是由德国数学家哥德巴赫提出的一个猜想(哥德巴赫猜想)任何一个≥6之偶数,都可以表示成两个奇质数之和;任何一个≥9之奇数,都可以表示成不超过三个的奇质数之和。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个质数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
咨询记录 · 回答于2022-08-06
1➕1?
亲亲您好,1➕1等于2
亲亲您好,1➕1等于2是由德国数学家哥德巴赫提出的一个猜想(哥德巴赫猜想)任何一个≥6之偶数,都可以表示成两个奇质数之和;任何一个≥9之奇数,都可以表示成不超过三个的奇质数之和。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个质数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
3和4之间的整数
亲亲您好,3和4之间的整数是没有整数的。整数的特点是若一个整数的末位是单偶数则这个整数能被2整除,若一个整数的数字和能被3整除则这个整数能被3整除,若一个整数的末尾两位数能被4整除则这个整数能被4整除,若一个整数的末位是0或5则这个整数能被5整除,若一个整数能被2和3整除则这个整数能被6整除。