已知向量组a1,a2,a3线性无关,证明向量组a1+2a2:a2+3a3:a1+a2+a3线性无关
1个回答
关注
展开全部
证明:
设 $a_{1}=(x_{1},y_{1},z_{1})$,$a_{2}=(x_{2},y_{2},z_{2})$,$a_{3}=(x_{3},y_{3},z_{3})$,
则 $a_{1}+2a_{2}=(x_{1}+2x_{2},y_{1}+2y_{2},z_{1}+2z_{2})$,
$a_{2}+3a_{3}=(x_{2}+3x_{3},y_{2}+3y_{3},z_{2}+3z_{3})$,
$a_{1}+a_{2}+a_{3}=(x_{1}+x_{2}+x_{3},y_{1}+y_{2}+y_{3},z_{1}+z_{2}+z_{3})$。
假设向量组 $a_{1}+2a_{2}$,$a_{2}+3a_{3}$,$a_{1}+a_{2}+a_{3}$ 线性相关,
则存在不全为零的 $\alpha_{1},\alpha_{2},\alpha_{3}$,使得 $\alpha_{1}(a_{1}+2a_{2})+\alpha_{2}(a_{2}+3a_{3})+\alpha_{3}(a_{1}+a_{2}+a_{3})=0$。
即 $\alpha_{1}(x_{1}+2x_{2},y_{1}+2y_{2},z_{1}+2z_{2})+\alpha_{2}(x_{2}+3x_{3},y_{2}+3y_{3},z_{2}+3z_{3})+\alpha_{3}(x_{1}+x_{2}+x_{3},y_{1}+y_{2}+y_{3},z_{1}+z_{2}+z_{3})=0$。
化简可得:
$\alpha_{1}x_{1}+2\alpha_{1}x_{2}+\alpha_{2}x_{2}+3\alpha_{2}x_{3}+\alpha_{3}x_{1}+\alpha_{3}x_{2}+\alpha{3}x{3}=0$,
$\alpha*{1}y*{1}+2\alpha*{1}y*{2}+\alpha*{2}y*{2}+3\alpha*{2}y*{3}+\alpha*{3}y*{1}+\alpha*{3}y*{2}+\alpha*{3}y*{3}=0$,
$\alpha*{1}z*{1}+2\alpha*{1}z*{2}+\alpha*{2}z*{2}+3\alpha*{2}z*{3}+\alpha*{3}z*{1}+\alpha*{3}z*{2}+\alpha*{3}z*{3}=0$。
咨询记录 · 回答于2023-12-25
已知向量组a1,a2,a3线性无关,证明向量组a1+2a2:a2+3a3:a1+a2+a3线性无关
亲,您好,
证明:
设 $a_1=(x_1,y_1,z_1)$,$a_2=(x_2,y_2,z_2)$,$a_3=(x_3,y_3,z_3)$,
则 $a_1+2a_2=(x_1+2x_2,y_1+2y_2,z_1+2z_2)$,
$a_2+3a_3=(x_2+3x_3,y_2+3y_3,z_2+3z_3)$,
$a_1+a_2+a_3=(x_1+x_2+x_3,y_1+y_2+y_3,z_1+z_2+z_3)$。
假设向量组 $a_1+2a_2$,$a_2+3a_3$,$a_1+a_2+a_3$ 线性相关,
则存在不全为零的 $\alpha_1$,$\alpha_2$,$\alpha_3$,使得
$\alpha_1(a_1+2a_2)+\alpha_2(a_2+3a_3)+\alpha_3(a_1+a_2+a_3)=0$
即
$\alpha_1(x_1+2x_2,y_1+2y_2,z_1+2z_2)+\alpha_2(x_2+3x_3,y_2+3y_3,z_2+3z_3)+\alpha_3(x_1+x_2+x_3,y_1+y_2+y_3,z_1+z_2+z_3)=0$
化简可得
$\alpha_{1}x_{1}+2\alpha_{1}x_{2}+\alpha_{2}x_{2}+3\alpha_{2}x_{3}+\alpha_{3}x_{1}+\alpha_{3}x_{2}+\alpha_{3}x_{3}=0$
$\alpha_{1}y_{1}+2\alpha_{1}y_{2}+\alpha_{2}y_{2}+3\alpha_{2}y_{3}+\alpha_{3}y_{1}+\alpha_{3}y_{2}+\alpha_{3}y_{3}=0$
$\alpha_{1}z_{1}+2\alpha_{1}z_{2}+\alpha_{2}z_{2}+3\alpha_{2}z_{3}+\alpha_{3}z_{1}+\alpha_{3}z_{2}+\alpha_{3}z_{3}=0$
由于向量组a1, a2, a3线性无关,则有:
* x1x2≠0
* x1x3≠0
* x2x3≠0
* y1y2≠0
* y1y3≠0
* y2y3≠0
* z1z2≠0
* z1z3≠0
* z2z3≠0
令α1=1,α2=-2,α3=1,则有:
* x1x2"2x2x3+x1x3≠0
* y1y2"2y2y3+y1y3≠0
* z1z2"2z2z3+z1z3≠0
这与假设矛盾,故向量组a1+2a2, a2+3a3, a1+a2+a3线性无关。证毕。
亲亲,抱歉哈,我手机看的照片都很模糊,麻烦您打成字给我
求矩阵A=1 0 0,-2 5 -2、-2 4 -1的特征值与特征向量
亲,
解:特征方程:$\lambda^3-7\lambda^2+14\lambda-8=0$
特征值:$\lambda_1=2,\lambda_2=4,\lambda_3=2$
对应特征向量:
$\left(\begin{array}{ccc}
1&-2&-2\\
0&5&4\\
0&-2&-1
\end{array}\right)
\left(\begin{array}{c}
x_1\\
x_2\\
x_3
\end{array}\right)
=\lambda
\left(\begin{array}{c}
x_1\\
x_2\\
x_3
\end{array}\right)$
当$\lambda=2$时,
$\left(\begin{array}{ccc}
1&-2&-2\\
0&5&4\\
0&-2&-1
\end{array}\right)
\left(\begin{array}{c}
x_1\\
x_2\\
x_3
\end{array}\right)
=2
\left(\begin{array}{c}
x_1\\
x_2\\
x_3
\end{array}\right)$
解得$x_1=1,x_2=1,x_3=1$
同理可以求得:
$\lambda_2=4$ 对应的特征向量为 $(1,2,1)^T$
$\lambda_3=2$ 对应的特征向量为 $(1,-1,1)^T$
因此,矩阵A的特征值与特征向量分别为:
特征值:$\lambda_1=2,\lambda_2=4,\lambda_3=2$
特征向量:$(1,1,1)^T,(1,2,1)^T,(1,-1,1)^T$
看不懂
太乱了
只需要答案吗,亲
亲,这是解题过程呀,不会乱呀
那些符号什么意思啊
亲,给您化简,如下:A=[1 0 0;-2 5 -2;-2 4 -1]特征值:特征值是指方程(A-λI)x=0的解中的λ,其中I是单位矩阵,x是非零向量。特征向量:特征向量是指方程(A-λI)x=0的解中的非零向量x。