X³y减12+X²y加36xy因式分解
1个回答
关注
展开全部
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b); (2) (a±b)2 = a2±2ab+b2 ——— a2±2ab+b2=(a±b)2; (3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2); (4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);
咨询记录 · 回答于2023-01-06
X³y减12+X²y加36xy因式分解
这利用提取公因式和公式法来做的,
因式分解法的四种方法:提公因式法、分组分解法、待定系数法、十字分解法。1、一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。3、待定系数法是初中数学的一个重要方法。用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的。由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。回答于 2022-04-25赞同62下一条回答
因式分解法的四种方法:提公因式法、分组分解法、待定系数法、十字分解法。1、一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b); (2) (a±b)2 = a2±2ab+b2 ——— a2±2ab+b2=(a±b)2; (3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2); (4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);
?
这是同底数幂的乘法,
同底数幂的乘法法则是同底数幂相乘,底数不变,指数相加。同底数幂,Thesamebasepowers是指底数相同的幂。同底数幂之间共有5条计算性质,对正指数幂和负指数幂均适用。
1、同底数幂相乘,底数不变,指数相加.如:[a^m]×[a^n]=a^(m+n)2、同底数幂相除,底数不变,指数相减.如:[a^m]÷[a^n]=a^(m-n)
乘法(1)同底数幂相乘,底数不变,指数相加: a^m×a^n=a^(m+n))(m、n都是整数) 。即幂的乘方,底数不变,指数相加。如a^5·a^2=a^(5+2)=a^7 。如a的负二次方乘a的负三次方等于a的负五次方。a的0次方乘a的0次方等于a的0次方。
?
请升级服务,给你做。已经做的够多了。谢谢
请理解我们的难处。
哦
这个就很划算。
请升级服务我给你做,很好的这个服务。