设f(x)=10X^3-3X-2,计算差商f[2^0,2^1,L,2^3]=
1个回答
关注
展开全部
首先,根据差商的定义:
f[x0,x1] = (f(x1) - f(x0)) / (x1 - x0)
我们可以计算出以下的差商:
f[2^0,2^1] = (f(2^1) - f(2^0)) / (2^1 - 2^0)
= (10×2^3 - 3×2^1 - 2 - (10×2^0 - 3×2^0 - 2)) / (2 - 1)
= (80 - 6 - 2 - 8 + 3) / (2 - 1)
= 67
f[2^1,2^2] = (f(2^2) - f(2^1)) / (2^2 - 2^1)
= (10×2^3 - 3×2^2 - 2 - (10×2^1 - 3×2^1 - 2)) / (4 - 2)
= (80 - 12 - 2 - 20 + 9) / (4 - 2)
= 27
f[2^2,2^3] = (f(2^3) - f(2^2)) / (2^3 - 2^2)
= (10×2^3 - 3×2^3 - 2 - (10×2^2 - 3×2^2 - 2)) / (8 - 4)
= (80 - 24 - 2 - 40 + 18) / (8 - 4)
咨询记录 · 回答于2024-01-12
设f(x)=10X^3-3X-2,计算差商f[2^0,2^1,L,2^3]=
首先,根据差商的定义:
f[x0,x1]= (f(x1)-f(x0))/(x1-x0)
我们可以计算出以下的差商:
f[2^0,2^1] = (f(2^1)-f(2^0))/(2^1-2^0)
= (10×2^3-3×2^1-2 - (10×2^0-3×2^0-2))/(2^1-2^0)
= (80-6-2-8+3)/(2-1)
= 67
f[2^1,2^2] = (f(2^2)-f(2^1))/(2^2-2^1)
= (10×2^3-3×2^2-2 - (10×2^1-3×2^1-2))/(2^2-2^1)
= (80-12-2-20+9)/(4-2)
= 27
f[2^2,2^3] = (f(2^3)-f(2^2))/(2^3-2^2)
= (10×2^3-3×2^3-2 - (10×2^2-3×2^2-2))/(2^3-2^2)
= (80-24-2-40+18)/(8-4)
= (80-24-2-40+18)/(8-4)
= 11/2
现在我们要计算的是 f[2^0,2^1,2^2,2^3]。
根据差商的递归定义,有:
f[x0,x1,x2,...,xn] = (f[x1,x2,...,xn]-f[x0,x1,x2,...,n-1])/(xn-x0)
因此,
f[2^0,2^1,2^2,2^3] = (f[2^1,2^2,2^3]-f[2^0,2^1,2^2])/(2^3-2^0)
= ((f[2^2,2^3]-f[2^1,2^2])/(2^3-2^1) - (f[2^1,2^2]-f[2^0,2^1])/(2^2-2^0))/(2^3-2^0)
= ((11/2-27)/(8-4) - (27-67)/(4-1))/7
= -43/56
因此,f[2^0,2^1,2^2,2^3]=-43/56。