fx为整系数多项式,整明fx=0的跟不可能全为实数为
1个回答
关注
展开全部
用反证法,假设f(x)=0有整数根x=n,
那么f(x)可以分解成f(x)=(x-n)P(x),其中P(x)是整系数多项式,
因为f(0)=-nP(0)是奇数,所以n是奇数,
因为f(1)=(1-n)P(1)是奇数,所以1-n是奇数,n是偶数,
矛盾,所以f(x)不能有整数根.
咨询记录 · 回答于2021-11-13
fx为整系数多项式,整明fx=0的跟不可能全为实数为
稍等
用反证法,假设f(x)=0有整数根x=n,那么f(x)可以分解成f(x)=(x-n)P(x),其中P(x)是整系数多项式,因为f(0)=-nP(0)是奇数,所以n是奇数,因为f(1)=(1-n)P(1)是奇数,所以1-n是奇数,n是偶数,矛盾,所以f(x)不能有整数根.