PA⊥矩形ABCD所在平面,MN分别是ABPC的中点

PA垂直矩形ABCD所在平面。M,N分别是ABPC中点求证(1)MN//平面PAD。(2)MN垂直CD(3)若角PDA=45°,求证MN⊥面PCD。... PA垂直矩形ABCD所在平面。M,N分别是ABPC中点求证(1)MN//平面PAD。(2)MN垂直CD(3)若角PDA=45°,求证MN⊥面PCD。 展开
kjw_
推荐于2016-10-16 · TA获得超过3.1万个赞
知道大有可为答主
回答量:7889
采纳率:65%
帮助的人:4294万
展开全部
取PD中点E,连AE、NE
1.∵N、E为PC、PD中点
∴NE∥CD∥AM,NE=CD/2=AB/2
又M为AB中点
∴NE=AM
∴AMNE是平行四边形
∴AE∥MN
∵AE∈平面PAD
∴MN∥平面PAD
2.∵PA⊥平面ABCD
∴PA⊥CD
∵ABCD是矩形
∴CD⊥AD
∴CD⊥平面PAD
∴CD⊥AE
∵MN∥AE
∴MN⊥CD
3.∵∠PDA=45°
∴△PAD是等腰直角三角形
∵E是PD中点
∴AE⊥PD
又AE⊥CD
∴AE⊥平面PCD
∴MN⊥平面PCD
富港检测技术(东莞)有限公司_
2024-03-25 广告
ASTM D4169-16标准是运用实际物流案例中具有代表性的和经过实践证明的一种试验方法,ASTM D4169-16有18个物流分配周期、10个危险因素和3个等级测试强度。10个危险因素分别为:A人工和机械操作(跌落、冲击和稳定性)、B仓... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式