第一换元积分法是什么?
1个回答
展开全部
第一类换元积分法也就是凑微分法,是把被积分式凑成某个函数的微分的积分方法,换元积分两种方法中第一类换元积分法的别称。
凑微分法,复合函数或因数分解为和式,再分别积分,正好能被积出的。 凑微分法当函数呈现为复合函数时,而复合函数又呈现简单的公式法特性时,先凑成微分形式,后正好能用公式法解的函数。
不定积分的公式:
1、∫adx=ax+C,a和C都是常数
2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1
3、∫1/xdx=ln|x|+C
4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1
5、∫e^xdx=e^x+C
6、∫cosxdx=sinx+C
7、∫sinxdx=-cosx+C
8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询