1/(1*2*3*4)+1/(2*3*4*5)+1/(3*4*5*6)+......+1/(17+
1个回答
关注
展开全部
1/(1*2*3*4)=1/3(1/1*2*3-1/2*3*4)1/(2*3*4*5)=1/3(1/2*3*4-1/3*4*5)......1/(1*2*3*4)+1/(2*3*4*5)+1/(3*4*5*6).+1/(17*18*19*20)=1/3(1/1*2*3-1/18*19*20)=1/3*(3*19*20-1)/(18*19*20)=1139/20520
咨询记录 · 回答于2022-11-20
1/(1*2*3*4)+1/(2*3*4*5)+1/(3*4*5*6)+......+1/(17+18+19+20)=?
1/(1*2*3*4)=1/3(1/1*2*3-1/2*3*4)1/(2*3*4*5)=1/3(1/2*3*4-1/3*4*5)......1/(1*2*3*4)+1/(2*3*4*5)+1/(3*4*5*6).+1/(17*18*19*20)=1/3(1/1*2*3-1/18*19*20)=1/3*(3*19*20-1)/(18*19*20)=1139/20520
有一个公式:1/[n(n+1)(n+1)]=(1/2)*[1/n(n+1)-1/(n+1)(n+2)]