泰勒公式中(x-x0)的几次方中的次方是怎样得到的

1个回答
展开全部
摘要 有阶数的泰勒公式,一个关于(x-x.)多项式和一个余项的和。
公式:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn
其中Rn=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。
咨询记录 · 回答于2021-11-16
泰勒公式中(x-x0)的几次方中的次方是怎样得到的
泰勒公式中(x-x0)的几次方中的次方数是看你要求导的是几次导数
有阶数的泰勒公式,一个关于(x-x.)多项式和一个余项的和。公式:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消