复数 (1-i) ^(1+ i)的值是多少
1个回答
关注
展开全部
我们把形如z=a+bi(a、b均为实数)的数称为复数。其中,a称为实部,b称为虚部,i称为虚数单位。当z的虚部b=0时,则z为实数;当z的虚部b≠0时,实部a=0时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
咨询记录 · 回答于2022-10-05
复数 (1-i) ^(1+ i)的值是多少
您好,复数 (1-i) ^(1+ i)的值是-i
我们把形如z=a+bi(a、b均为实数)的数称为复数。其中,a称为实部,b称为虚部,i称为虚数单位。当z的虚部b=0时,则z为实数;当z的虚部b≠0时,实部a=0时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
数集拓展到实数范围内,仍有些运算无法进行(比如对负数开偶数次方),为了使方程有解,我们将数集再次扩充。
在实数域上定义二元有序对z=(a,b),并规定有序对之间有运算“+”、“×”(记z1=(a,b),z2=(c,d)):z1+z2=(a+c,b+d)z1×z2=(ac-bd,bc+ad)
容易验证,这样定义的有序对全体在有序对的加法和乘法下成一个域,并且对任何复数z,我们有z=(a,b)=(a,0)+(0,1)×(b,0)
令f是从实数域到复数域的映射,f(a)=(a,0),则这个映射保持了实数域上的加法和乘法,因此实数域可以嵌入复数域中,可以视为复数域的子域。
记i=(0,1),则根据我们定义的运算,(a,b)=(a,0)+(0,1)×(b,0)=a+bi,i×i=(0,1)×(0,1)=(-1,0)=-1,这就只通过实数解决了虚数单位i的存在问题。