16.已知函数 f(x)=sin^2x+√3sinxcosx-1/2,(x属于R)(1)若函数f(X+θ)的图象过点p(π/3,0),且θ∈(0,π/2),求θ的值;(2)若f(a)=2√2/3,且α∈(0,π/3),求sin(α+5π/12)的值
1个回答
关注
展开全部
咨询记录 · 回答于2023-02-08
16.已知函数 f(x)=sin^2x+√3sinxcosx-1/2,(x属于R)(1)若函数f(X+θ)的图象过点p(π/3,0),且θ∈(0,π/2),求θ的值;(2)若f(a)=2√2/3,且α∈(0,π/3),求sin(α+5π/12)的值
亲亲 您好 16.已知函数 f(x)=sin^2x+√3sinxcosx-1/2,(x属于R)(1)若函数f(X+θ)的图象过点p(π/3,0),且θ∈(0,π/2),求θ的值;(2)若f(a)=2√2/3,且α∈(0,π/3),求sin(α+5π/12)的值如下:(1)令f(π/3+θ)=0,由f(x)=sin^2x+√3sinxcosx-1/2,有sin^2(π/3+θ)+√3sin(π/3+θ)cos(π/3+θ)-1/2=0,化简得sinθ=-1/2√3,所以θ=-π/6;(2)令f(α)=2√2/3,有sin^2α+√3sinαcosα-1/2=2√2/3,即sin^2α-√2/3+√3sinαcosα=1/2,令t=2sinαcosα,有sin^2α=1/2-√2/3+t,即α=sin^-1((1/2-√2/3+t)/2),由sin(α+5π/12)=sinαcos(5π/12)+cosαsin(5π/12),即sin(α+5π/12)=sinαcos(5π/12)+√(1-sin^2α)sin(5π/12),从而sin(α+5π/12)=sinαcos(5π/12)+√(1- 1/2+√2/3-t)sin(5π/12),即sin(α+5π/12)=sinαcos(5π/12)+√(1/2+√2/3-t)sin(5π/12)。