已知sin(α-β)=1/3,cosαsinβ=1/6,求cos(2α+2β)
1个回答
关注
展开全部
亲,你好!
为您找寻的答案:
cos(2α+2β) = 11/18 - 4sqrt(2)/9。
根据三角函数的和差公式,有:
sin(α-β) = sinαcosβ - cosαsinβ
代入已知条件,得:
1/3 = sinαcosβ - cosαsinβ
1/6 = cosαsinβ
由此可得:
cosαcosβ = sqrt(1 - cos^2α) * sqrt(1 - cos^2β) = sqrt(1 - (cosαsinβ)^2) = sqrt(1 - 1/36) = sqrt(35/36) = sqrt(35)/6
sinαsinβ = 2cosαsinβ/2 = cos(π/2 - α)sinβ = sin(α-π/2)sinβ = -cosαcos(π/2-β) = cosαsinβ = 1/6
接下来,计算cos(2α+2β):
cos(2α+2β) = cos^2(α+β) - sin^2(α+β) = (cosαcosβ - sinαsinβ)^2 - (sinαcosβ + cosαsinβ)^2
= cos^2αcos^2β - 2cosαsinαsinβcosβ + sin^2αsin^2β - sin^2αcos^2β - 2cosαsinαsinβsinβ - cos^2αsin^2β
= cos^2α(cos^2β - sin^2β) - sin^2α(sin^2β - cos^2β) - 2cosαsinαsinβ(cos^2β + sin^2β)
= (cos^2α - sin^2α)(cos^2β - sin^2β) - 2cosαsinαsinβ
= cos2αcos2β - sin2αsin2β - 2cosαsinαsinβ
= cos2αcos2β - sin2αsin2β - cos(α-β) + cos(α-β)
= cos2αcos2β - cos(α-β) - cos(α-β)
= cos2αcos2β - 2cos(α-β)
代入已知条件,
咨询记录 · 回答于2024-01-08
已知sin(α-β)=1/3,cosαsinβ=1/6,求cos(2α+2β)
亲,你好!为您找寻的答案:
cos(2α+2β) = 11/18 - 4sqrt(2)/9。
根据三角函数的和差公式,有:
sin(α-β) = sinαcosβ - cosαsinβ
代入已知条件,得:
1/3 = sinαcosβ - cosαsinβ
1/6 = cosαsinβ
由此可得:
cosαcosβ = sqrt(1 - cos^2α) * sqrt(1 - cos^2β) = sqrt(1 - (cosαsinβ)^2) = sqrt(1 - 1/36) = sqrt(35/36) = sqrt(35)/
sinαsinβ = 2cosαsinβ/2 = cos(π/2 - α)sinβ = sin(α-π/2)sinβ = -cosαcos(π/2-β) = cosαsinβ = 1/6
接下来,计算cos(2α+2β):
cos(2α+2β) = cos^2(α+β) - sin^2(α+β) = (cosαcosβ - sinαsinβ)^2 - (sinαcosβ + cosαsinβ)^2
= cos^2αcos^2β - 2cosαsinαsinβcosβ + sin^2αsin^2β - sin^2αcos^2β - 2cosαsinαsinβsinβ - cos^2αsin^2β
= cos^2α(cos^2β - sin^2β) - sin^2α(sin^2β - cos^2β) - 2cosαsinαsinβ(cos^2β + sin^2β)
= (cos^2α - sin^2α)(cos^2β - sin^2β) - 2cosαsinαsinβ
= cos2αcos2β - sin2αsin2β - 2cosαsinαsinβ
= cos2αcos2β - sin2αsin2β - cos(α-β) + cos(α-β)
= cos2αcos2β - sin2αsin2β - cos(α-β) + cos(β-α)
= cos2αcos2β - cos(α-β) - cos(α-β)
= cos2αcos2β - 2cos(α-β)
代入已知条件,"
亲亲,
可得:
cos(α-β) = sqrt(1 - sin^2(α-β)) = sqrt(8/9) = 2sqrt(2)/3
cos(2α+2β) = cos2αcos2β - 2cos(α-β)
= (cos^2α - sin^2α)(cos^2β - sin^2β) - 2cos(α-β)
= (1 - 4/36)(35/36 - 1/36) - 2 * 2sqrt(2)/3
= 11/18 - 4sqrt(2)/9
因此,cos(2α+2β) = 11/18 - 4sqrt(2)/9。