知道玄长 弧高怎么算半径
1个回答
关注
展开全部
R^2=(R-H)^2+(L/2)^2
R^2=R^2-2*R*H+H^2+L^2/4
2*R*H=H^2+L^2/4
R=H/2+L^2/(8*H)
若直线l:y=kx+b,与圆锥曲线相交与A、B两点,A(x1,y1)B(x2,y2)
弦长|AB|=√[(x1-x2)^2+(y1-y2)^2]=√[(x1-x2)^2+(kx1-kx2)^2]=√(1+k^2)|x1-x2|=√(1+k^2)√[(x1+x2)^2-4x1x2]
咨询记录 · 回答于2021-10-22
知道玄长 弧高怎么算半径
R^2=(R-H)^2+(L/2)^2R^2=R^2-2*R*H+H^2+L^2/42*R*H=H^2+L^2/4R=H/2+L^2/(8*H)若直线l:y=kx+b,与圆锥曲线相交与A、B两点,A(x1,y1)B(x2,y2)弦长|AB|=√[(x1-x2)^2+(y1-y2)^2]=√[(x1-x2)^2+(kx1-kx2)^2]=√(1+k^2)|x1-x2|=√(1+k^2)√[(x1+x2)^2-4x1x2]
R^2=(R-H)^2+(L/2)^2R^2=R^2-2*R*H+H^2+L^2/42*R*H=H^2+L^2/4R=H/2+L^2/(8*H)若直线l:y=kx+b,与圆锥曲线相交与A、B两点,A(x1,y1)B(x2,y2)弦长|AB|=√[(x1-x2)^2+(y1-y2)^2]=√[(x1-x2)^2+(kx1-kx2)^2]=√(1+k^2)|x1-x2|=√(1+k^2)√[(x1+x2)^2-4x1x2]
已知弦长l 弦高h 求对应的弧长设弦长=2l,弦高=h,半径=R,圆心角=2a. 根据相交弦定理:(2R-h)h=l^2 --->R=(l^2 h^2)/(2h). sina=l/R=2hl/(l^2 h^2) --->a=arcsin[2hl/(l^2 h^2)] 所以,弧长=aR=a(l^2 h^2)/(2h). ^2是指二次方