已知等比数列an,其前n项和为sn,已知s2=3a ,求s3/a3
1个回答
关注
展开全部
亲您好,根据等比数列的性质,可以得到:a1 * r = a2a2 * r = a3将上述两式相乘,得到:a1 * r * a2 * r = a2 * r * a3即 a1 * r^2 = a3又因为前n项和公式为:sn = a1 * (1 - r^n) / (1 - r)所以:s2 = a1 * (1 - r^2) / (1 - r)将s2 = 3a代入上式,得到:a1 * (1 - r^2) / (1 - r) = 3a化简得:a1 = 3r / (r + 1)将a1和a3代入s3的公式,得到:s3 = a1 * (1 - r^3) / (1 - r)a3 = a1 * r^2 = 9r^3 / (r + 1)^2所以:s3 / a3 = (a1 * (1 - r^3) / (1 - r)) / (9r^3 / (r + 1)^2)化简得:s3 / a3 = (r + 1)^2 * (1 - r^3) / (9r^2 * (1 - r))
咨询记录 · 回答于2023-04-18
已知等比数列an,其前n项和为sn,已知s2=3a ,求s3/a3
亲您好,根据等比数列的性质,可以得到:a1 * r = a2a2 * r = a3将上述两式相乘,得到:a1 * r * a2 * r = a2 * r * a3即 a1 * r^2 = a3又因为前n项和公式为:sn = a1 * (1 - r^n) / (1 - r)所以:s2 = a1 * (1 - r^2) / (1 - r)将s2 = 3a代入上式,得到:a1 * (1 - r^2) / (1 - r) = 3a化简得:a1 = 3r / (r + 1)将a1和a3代入s3的公式,得到:s3 = a1 * (1 - r^3) / (1 - r)a3 = a1 * r^2 = 9r^3 / (r + 1)^2所以:s3 / a3 = (a1 * (1 - r^3) / (1 - r)) / (9r^3 / (r + 1)^2)化简得:s3 / a3 = (r + 1)^2 * (1 - r^3) / (9r^2 * (1 - r))
由题目已知s2 = 3a,即:a1 * (1 - r^2) / (1 - r) = 3a化简得:a1 = 3r / (r + 1)^2代入s3 / a3的公式,得到:s3 / a3 = (r + 1)^2 * (1 - r^3) / (27r^2 * (1 - r))综上所述,s3 / a3 = (r + 1)^2 * (1 - r^3) / (27r^2 * (1 - r)),其中r为等比数列的公比。