一元二次方程如何分解
1个回答
关注
展开全部
一元二次方程分解方法1,用配方法解方程ax^2+bx+c=0(a≠0)先将常数c移到方程右边:ax^2+bx=-c将二次项系数化为1:x^2+b/ax=-c/a方程两边分别加上一次项系数的一半的平方:x^2+b/ax+(b/2a)^2=-c/a+(b/2a)^2;方程左边成为一个完全平方式:(x+b/2a)2=-c/a﹢﹙b/2a﹚²当b²-4ac≥0时,x+b/2a=±√﹙﹣c/a﹚﹢﹙b/2a﹚²∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)
咨询记录 · 回答于2022-08-15
一元二次方程如何分解
一元二次方程分解方法1,用配方法解方程ax^2+bx+c=0(a≠0)先将常数c移到方程右边:ax^2+bx=-c将二次项系数化为1:x^2+b/ax=-c/a方程两边分别加上一次项系数的一半的平方:x^2+b/ax+(b/2a)^2=-c/a+(b/2a)^2;方程左边成为一个完全平方式:(x+b/2a)2=-c/a﹢﹙b/2a﹚²当b²-4ac≥0时,x+b/2a=±√﹙﹣c/a﹚﹢﹙b/2a﹚²∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)
2,公式法把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±√(b²-4ac)]/(2a),(b²-4ac≥0)就可得到方程的根。3,因式分解法把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。