无限不循环小数是不是有理数
展开全部
无限循环小数是有理数,他可以把小数转化为分数;无限不循环小数是无理数,无法转化为分数。
无限循环小数:从小数点后某一位开始不断地出重复现前一个或一节数码的十进制无限小数。如2。1666…、35。232323…等,被重复的一个或一节数码称为循环节。
循环小数的缩写法是将第一个循环节以后的数码全部略去,而在保留的循环节首末两位上方各添一个小点。
刚才我们说的都是上的点如何用小数来表示。我们也得到了结论:数轴上任何点都能找到对应的小数表示。那么,我们要问,随便拿一个无限小数,我们怎样在数轴上找到和它对应的点。
一个无限小数对应一个确定的点。
按第一部分的分析,我们举一个无理数的例子:比如说,3.1415926……(圆周率),它表示数轴上哪个点呢。
它应该表示这样一个"确定的点"(确定的点,这很重要):它在整数3与4之间(即大于等于3小于等于4)。
如果把34线段十等分,它应该在第一、二分点之间(大于等于3.1小于等于3.2),如果把3.1 3.2之间线段十等分,它在第四和第五分点之间,等等。
展开全部
无限不循环小数无法化成分数,所以不是有理数,是无理数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
无限不循环小数不是有理数,属于无理数。有理数是一个整数和另一个正整数相除得到的结果,有理数分为整数和分数,而有理数的小数部分分为有限与无限,如果是无限的数,那它的小数部分必须是有规律的,循环数。
无限循环小数是可以被表示为一个整数除以一个正整数的。而无理数,即不能表示为一个整数除以一个正整数的形式,小数点后面的数字是没有规律的,不循环的数字。简单的说,无理数就是10进制下的无限不循环小数,所以无限不循环小数是属于无理数的。
无限循环小数是可以被表示为一个整数除以一个正整数的。而无理数,即不能表示为一个整数除以一个正整数的形式,小数点后面的数字是没有规律的,不循环的数字。简单的说,无理数就是10进制下的无限不循环小数,所以无限不循环小数是属于无理数的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询