解析几何产生的时代背景是什么?

1个回答
纪老师教育日记
2023-05-29 · 超过29用户采纳过TA的回答
知道答主
回答量:197
采纳率:100%
帮助的人:2.4万
展开全部
一、解析几何产生的实际背景和数学条件
解析几何的实际背景更多的是来自对变量数学的需求。
解析几何产生数学自身的条件:
几何学已出现解决问题的乏力状态;代数已成熟到能足以有效地解决几何问题的程度.解析几何的实际背景更多的是来自对变量数学的需求。从16世纪开始,欧洲资本主义逐渐发展起来,进入了一个生产迅速发展,思想普遍活跃的时代。生产实践积累了大量的新经验,并提出了大量的新问题。可是,对于机械、建筑、水利、航海、造船、显微镜和火器制造等领域的许多数学问题,已有的常量数学已无能为力,人们迫切地寻求解决变量问题的新数学方法。
二、解析几何产生前的几何学:
平面几何,立体几何(欧几里得的《几何原本》),圆锥曲线论(阿波罗尼斯的《圆锥曲线论》),特点:静态的几何,既不把曲线看成是一种动点的轨迹,更没有给它以一般的表示方法。
三、几何学出现解决问题的乏力状态:
16世纪以后,哥白尼提出日心说,伽利略得出惯性定律和自由落体定律,这些都向几何学提出了用运动的观点来认识和处理圆锥曲线及其他几何曲线的课题几何学必须从观点到方法来一个变革,创立起一种建立在运动观点上的几何学。
16世纪代数的发展恰好为解析几何的诞生创造了条件。1591年法国数学家韦达第一个在代数中有意识地系统地使用了字母,他不仅用字母表示未知数,而且用以表示已知数,包括方程中的系数和常数。这样,代数就从一门以分别解决各种特殊问题的侧重于计算的数学分支,成为一门以研究一般类型的形式和方程的学问。这就为几何曲线建立代数方程铺平了道路。代数的符号化,使坐标概念的引进成为可能,从而可建立一般的曲线方程,发挥其具有普遍性的方法的作用。

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消