用卡诺图法化简函数
1个回答
关注
展开全部
亲亲您好,用卡诺图法化简函数如下:卡诺图化简法是化简真值函数的方法之一,它具有几何直观性这一明显的特点,在变元较少(不超过六个)的情况下比较方便,且能得到最简结果。此法由卡诺于1953年提出,其具体步骤如下:1.构造卡诺框;2.在卡诺框上做出所给真值函数f的卡诺图;
咨询记录 · 回答于2022-11-01
用卡诺图法化简函数
亲亲您好,用卡诺图法化简函数如下:卡诺图化简法是化简真值函数的方法之一,它具有几何直观性这一明显的特点,在变元较少(不超过六个)的情况下比较方便,且能得到最简结果。此法由卡诺于1953年提出,其具体步骤如下:1.构造卡诺框;2.在卡诺框上做出所给真值函数f的卡诺图;
3.用卡诺图化简真值函数,首先把相邻的1字块两两合成矩形得到一维块;把22个相邻的1字块合成矩形(或正方形)得到二维块;把23个相邻的1字块合成矩形得到三维块等,合成的各种维块统称f的合块;4.把f的卡诺图中全部1字块做成若干个合块,这样一组合块就称为f的一个覆盖组,f的一切覆盖组中所含块数最小的组即是f的最小覆盖组;5.在最小覆盖组中,合块维数总和最大的组的对应式是f的最简式。
请问下这题怎么做啊
是这个
发错了
第三题