空间向量的数量积运算
展开全部
空间向量的数量积公式是λa·b=a·λb,空间中具有大小和方向的量叫做空间向量,首兆向量的大小叫做向量握信的长度或模。
规定长度为0的向量叫做零向量,记为0,模为1的向量称为单位向量。与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a方向相等且模相等的向量称为相等向量。
三个坐标面把空间分成八个部分,每个部段芹轮分叫做一个卦限。含有x轴正半轴、y轴正半轴、Z轴正半轴的卦限称为第一卦限,其他第二、三、四卦限,在xoy面的上方,按逆时针方向确定。
在第一、二、三、四卦限下面的部分分别称为第五、六、七、八卦限。
基本定理
1、共线向量定理
两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb。
2、共面向量定理
如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。
3、空间向量分解定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。
任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询