一到大学解析几何的题
1个回答
关注
展开全部
平面方程求解方法:1、空间坐标系内,平面的方程均可用三元一-次方程, Ax+ By+Cz+D=0的一般方程那么它的法向量为(A,B,C)。2、可以从平面的点法式看出来: n.MM' =0,n=(A,B,C),MM' =(x-x0,y-yO,z-z0), A(x-x0)+ B(y-y0)+C(z-z0)=0。3、三点求平面可以取向量积为法线,任一三元- -次方程的图形总是一个平面,其中x,y,z的系数就是该平面的一个法向量的坐标。
咨询记录 · 回答于2023-01-14
一到大学解析几何的题
同学你好,可以把问题发给老师先看一下哈,老师为您提供一对一服务
这个
好的问题老师已经收到
好的,答案是7x -4y -2z+1=0
具体的解析过程,老师,等一下写在演草纸上发,你看一下
平面方程求解方法:1、空间坐标系内,平面的方程均可用三元一-次方程, Ax+ By+Cz+D=0的一般方程那么它的法向量为(A,B,C)。2、可以从平面的点法式看出来: n.MM' =0,n=(A,B,C),MM' =(x-x0,y-yO,z-z0), A(x-x0)+ B(y-y0)+C(z-z0)=0。3、三点求平面可以取向量积为法线,任一三元- -次方程的图形总是一个平面,其中x,y,z的系数就是该平面的一个法向量的坐标。
同学可以先设一个变量入两个方程加起来=0
然后整理合并一下,又因为在x轴和y轴有截距
所以可以把x=0.y=0分别代入
然后求的xy值
然后x=0的话是y跟雷梅塔的,二元一次方程y=0,是x和雷梅塔的二元一次方程,所以说咱们得到了三个方程,三个方程,三个未知量是可以求解的
同学明白了嘛
明白了
打小看你就聪明
同学还有其他问题嘛