2^a2^b=2^c2^d=100, 求证: (a+1)(d+1)=(b+1)(c+1).
1个回答
关注
展开全部
过程稍稍有点复杂
咨询记录 · 回答于2023-03-29
2^a2^b=2^c2^d=100, 求证: (a+1)(d+1)=(b+1)(c+1).
有点小急
过程稍稍有点复杂
第一步a+b = log2(100)c+d = log2(100)将式子变形,得到:a = log2(100) - bc = log2(100) - d
然后将a和c带入证明式中,有:(a+1)(d+1)=(b+1)(c+1)= (log2(100) - b + 1)(d + 1) = (b + 1)(log2(100) - d + 1)
然后展开得到log2(100)d - bd + log2(100) - b + d + 1 = bd - b + log2(100)d - d + log2(100) + 1化简可得:b + d = log2(100) - 1
然后将b+d的值带入前面的式子,可以得到:(a+1)(d+1)=(b+1)(c+1)= (log2(100) - b + 1)(d + 1) = (b + 1)(log2(100) - d + 1)= (log2(100) - b + 1)(log2(100) - d + 2)/(log2(100) - 1) = (b + 1)(c + 2)/(log2(100) - 1)
化简后可得:(a+1)(d+1)=(b+1)(c+1)= (log2(100) - b + 1)(log2(100) - d + 2) = (b + 1)(c + 2)将b+d=log2(100)-1带入,化简后可得:(a+1)(d+1)=(b+1)(c+1)= (log2(100) - b + 1)(log2(100) - log2(100) + 1) = (b + 1)(log2(100) - b + 1)= (log2(100) - b + 1)^2 = (b + 1)(log2(100) - b + 1)
(b + 1)(b - log2(100) + 3) = 0因此,b = log2(100) - 3,代回原式可得:a = 5 - b = 2c = 5 - d = 3
最后证明(a+1)(d+1)=(b+1)(c+1)= (2+1)(4+1) = (3+1)(3+1)
b➕d那部没太懂
哪里?
然后展开得到log2(100)d - bd + log2(100) - b + d + 1 = bd - b + log2(100)d - d + log2(100) + 1化简可得:b + d = log2(100) - 1把c代入不应该是 log2(100)b嘛
不是,是把那个式子拆开然后再代入b+d
你看第一步就已经化简出来了第一步a+b = log2(100)c+d = log2(100)将式子变形,得到:a = log2(100) - bc = log2(100) - d
还是没懂 第三步不应该是这样吗log2(100)d - bd + log2(100) - b + d + 1 = log2(100)b-bd+b+log2(100)-d+1
不是
亲亲是这样的,你把右边那个式子用(b+1)(c+1)代入
(a+1)(d+1)=(b+1)(c+1)左边的代入就是log2(100)d - bd + log2(100) - b + d + 1 ,右边就等于bd - b + log2(100)d - d + log2(100) + 1
你先别管bd了
先代ac就可以了
代c 右边肯定是log2(100)b啊咋是log2(100)d
c=log2(100)-d