1.求数列1/(1x3),1/(2x4),1/(3x5),…,1/nx(n+2)…前n项和Sn
1个回答
关注
展开全部
1. 1/nx(n+2)=1/2x(1/n-1/(n+2)) Sn=1/(1x3)+1/(2x4)+…+1/nx(n+2) =1/2x(1-1/3+1/2-1/4+…+1/n-1/(n+2)) =1/2x(1+1/2-1/(n+1)-1/(n+2)) =3/4-1/2(1/(n+1)+1/(n+2))2.an=1/(4n^2-1) =1/(2n+1)x(2n-1) =1/2x(1/(2n-1)-1/(2n+1)) 就跟1的情况是一样的了 Sn=3/4-1/2(1/(n+1)+1/(n+2))
咨询记录 · 回答于2022-03-14
1.求数列1/(1x3),1/(2x4),1/(3x5),…,1/nx(n+2)…前n项和Sn
1. 1/nx(n+2)=1/2x(1/n-1/(n+2)) Sn=1/(1x3)+1/(2x4)+…+1/nx(n+2) =1/2x(1-1/3+1/2-1/4+…+1/n-1/(n+2)) =1/2x(1+1/2-1/(n+1)-1/(n+2)) =3/4-1/2(1/(n+1)+1/(n+2))2.an=1/(4n^2-1) =1/(2n+1)x(2n-1) =1/2x(1/(2n-1)-1/(2n+1)) 就跟1的情况是一样的了 Sn=3/4-1/2(1/(n+1)+1/(n+2))
希望我的回答对你有帮助
已赞过
评论
收起
你对这个回答的评价是?