0.9999……为什么等于1?
1个回答
展开全部
第一种解法:
∵ 1/3=0.333...
等式两边同时乘以3,即1/3×3=0.333...×3
又∵ 等式左边1/3×3=1,等式右边0.333...×3=0.999...
∴1=0.999...
标准解法:
令0.9的循环为x,
0.9循环可以看成是0.9加上0.09的循环,即:
x=0.9+0.1*x
X-0.1*X=0.9
X(1-0.1)=0.9
0.9X=0.9
所以,x=1
即1=0.999999[0.9的循环]
实际上在学了极限的概念后,就比较好理解这个问题了
∵ 1/3=0.333...
等式两边同时乘以3,即1/3×3=0.333...×3
又∵ 等式左边1/3×3=1,等式右边0.333...×3=0.999...
∴1=0.999...
标准解法:
令0.9的循环为x,
0.9循环可以看成是0.9加上0.09的循环,即:
x=0.9+0.1*x
X-0.1*X=0.9
X(1-0.1)=0.9
0.9X=0.9
所以,x=1
即1=0.999999[0.9的循环]
实际上在学了极限的概念后,就比较好理解这个问题了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询