二重积分这几道题怎么算,答案是什么,要步骤
1个回答
关注
展开全部
二重积分 {3x+6y+cosxsiny+9} 的计算过程如下:
1. 将积分区域 D 拆分为两个矩形区域:
- D1 = {(x,y)|-π <= x <= 0, -π <= y <= π}
- D2 = {(x,y)|0 <= x <= π, -π <= y <= π}
2. 在 D1 中,∫∫ (3x + 6y + cosxsiny + 9) dxdy
= ∫∫ 3x + 6y dxdy + ∫∫ cosxsiny dxdy + ∫∫ 9 dxdy
= 3 × 2π × 2π - ∫∫ cosxsiny dxdy + 9 × 2π × 2π
= 16π - ∫∫ cosxsiny dxdy + 18π
3. 在 D2 中,∫∫ cosxsiny dxdy
= ∫0^π ∫-π^π cosxsiny dxdy
= 2π × (-cosπ + cos0)
= 2π × (1 + 1)
= 4π
4. 综上,∫∫ (3x + 6y + cosxsiny + 9) dxdy = 16π - 4π + 18π = 16π + 9π
咨询记录 · 回答于2024-01-07
二重积分这几道题怎么算,答案是什么,要步骤
是哪几道题
好的
二重积分{3x+6y+cosxsiny+9}的结果是:∫∫(3x+6y+cosxsiny+9)dxdy = 16π + 9π
二重积分{x^2•y^3dxdy}的结果是:∫∫(x^2•y^3)dxdy = 2π/15
二重积分{(2+x^3cosy)}的计算过程如下:
1. 将积分区域D拆分为两个矩形区域:
D1={(x,y)|-1<=x<=0, -1<=y<=1}
和
D2={(x,y)|0<=x<=1, -1<=y<=1}
2. 在D1中,
∫∫(2+x^3cosy)dxdy
= ∫∫2dxdy + ∫∫x^3cosydxdy
= 2•2 - ∫∫x^3sinydxdy
= 4 - ∫∫x^3sinydxdy
3. 在D2中,
∫∫x^3cosydxdy
= ∫∫x^3cosydxdy
= ∫∫x^3cosydxdy
= ∫∫x^3cosydxdy
= ∫0^1∫-1^1x^3cosydxdy
= 2 - 0 = 2
4. 综上,
∫∫(2+x^3cosy)dxdy
= 4 - (2 - 0) = 4
二重积分{3x+6y+cosxsiny+9}的计算过程如下:
1. 将积分区域D拆分为两个矩形区域:
D1={(x,y)|-π<=x<=0, -π<=y<=π}
和
D2={(x,y)|0<=x<=π, -π<=y<=π}
2. 在D1中,
∫∫(3x+6y+cosxsiny+9)dxdy
= ∫∫3x+6ydxdy + ∫∫cosxsinydxdy + ∫∫9dxdy
= 3×2π×2π - ∫∫cosxsinydxdy + 9×2π×2π
= 16π - ∫∫cosxsinydxdy + 18π
3. 在D2中,
∫∫cosxsinydxdy = ∫0^π∫-π^πcosxsinydxdy
= 2π×(-cosπ + cos0)
= 2π×(1 + 1)
= 4π
4. 综上,
∫∫(3x+6y+cosxsiny+9)dxdy = 16π - 4π + 18π = 16π + 9π
二重积分{x^2•y^3}的计算过程如下:
1. 将积分区域D拆分为两个矩形区域:
- D1={(x,y)|-1<=x<=0, -1<=y<=1}
- D2={(x,y)|0<=x<=1, -1<=y<=1}
2. 在D1中,∫∫x^2•y^3dxdy = ∫∫x^2dxdy•∫∫y^3dy = ∫-1^0∫-1^1x^2dxdy•∫-1^1y^3dy = (-1/3)•(-1/4) = 1/12
3. 在D2中,∫∫x^2•y^3dxdy = ∫0^1∫-1^1x^2dxdy•∫-1^1y^3dy = (1/3)•(-1/4) = -1/12
4. 综上,∫∫(x^2•y^3)dxdy = 1/12 - (-1/12) = 2/12 = 2π/15
二重积分{xye^(x^2+y^2)dxdy}的计算过程如下:
1. 将积分区域D拆分为两个矩形区域:
D1={(x,y)|-1<=x<=0, -1<=y<=1}
D2={(x,y)|0<=x<=1, -1<=y<=1}
2. 在D1中,
∫∫xye^(x^2+y^2)dxdy = ∫∫xye^(x^2+y^2)dxdy = ∫-1^0∫-1^1xye^(x^2+y^2)dxdy = (-1/2)•(-e+1) = e/2
3. 在D2中,
∫∫xye^(x^2+y^2)dxdy = ∫0^1∫-1^1xye^(x^2+y^2)dxdy = (1/2)•(-e+1) = -e/2
4. 综上,
∫∫xye^(x^2+y^2)dxdy = e/2 - (-e/2) = e
二重积分{(x/y) "dxdy}的计算过程如下:
1. 将积分区域D拆分为两个矩形区域:
D1 = {(x,y)|0 <= x <= 2, 1 <= y <= e}
D2 = {(x,y)|2 <= x <= 4, 1 <= y <= e}
2. 在D1中,
∫∫(x/y) "dxdy
= ∫∫(x/y)dxdy
= ∫0^2∫1^ex/ydxdy
= (2/e) "(e-1)
= 2-2/e
3. 在D2中,
∫∫(x/y) "dxdy
= ∫2^4∫1^ex/ydxdy
= (2/e) "(e-1)
= 2-2/e
4. 综上,
∫∫(x/y) "dxdy
= 2-2/e + 2-2/e
= 4-4/e
二重积分{ydxdy}的计算过程如下:
1. 将积分区域D拆分为两个矩形区域:
D1={(x,y)|1<=x<=2, x<=y<=x+2}
D2={(x,y)|2<=x<=3, x<=y<=x+2}
2. 在D1中,∫∫ydxdy = ∫∫ydxdy = ∫1^2∫x^(x+2)ydxdy = (1/3)*(2^3-1^3) = 7/3
3. 在D2中,∫∫ydxdy = ∫2^3∫x^(x+2)ydxdy = (1/3)*(3^3-2^3) = 11/3
4. 综上,∫∫ydxdy = 7/3 + 11/3 = 18/3
已赞过
评论
收起
你对这个回答的评价是?