f(x)=√(x²-4)+ln(x²-8)的定义域
1个回答
关注
展开全部
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
咨询记录 · 回答于2023-01-04
f(x)=√(x²-4)+ln(x²-8)的定义域
亲!您描述的有歧义哦,能发个图片吗?无法确认您的问题
这道题
亲,到底是哪道题呢?
下面这个
好的,亲,稍微要点时间
亲,以上就是我的解答
一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义,二阶和二阶以上的导数统称为高阶导数
还有这个
谢谢
好的,亲,要点时间
亲,以上就是我的解答
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
积分方法积分公式法直接利用积分公式求出不定积分。换元积分法换元积分法可分为第一类换元法与第二类换元法。